MotionSense数据集 该数据集包括由加速度计和陀螺仪传感器生成的时间序列数据(高度,重力,用户加速度和rotationRate)。 使用其与iPhone 6s放在参与者的前袋中收集,该可从iOS设备上的框架收集信息。 所有数据以50Hz采样率采集。 共有24位不同性别,年龄,体重和身高的参与者在15个试验中在相同的环境和条件下进行了6项活动:楼下,楼上,步行,慢跑,坐着和站立。 借助该数据集,我们旨在在传感器数据的时间序列中查找个人属性指纹,即可以用于推断数据主体除其活动之外的性别或个性的特定于属性的模式。 时间序列对应于数据主体的步行活动(代码3)。 有12个功能。 一些注意事项: 如果您在此处查看“”,请查看pmc_xxx和tutorial文件夹。 如果您正在训练有关传感器数据的深度神经网络,则可以在以下链接中找到我们的最新工作,这对您的工作很有用: : 下载 MotionSense数据集可公开使用也可以作为备份使用。 还有一个Kaggle版本: ://www.kaggle.com/malekzadeh/motionsense-dataset 引文 如果您发现
2021-11-21 22:29:58 196.59MB mobile deep-learning time-series sensor
1
四足机器人步态 四足机器人的小跑、爬行、转弯步态(鳄鱼灵感)。 还包括通过头部红外传感器检测障碍物。 视频: :
1
matlab肌电信号处理代码Wearable_Sensor_Long-term_sEMG_Dataset 该代码在《生物医学信号处理和控制》 ( Biomedical Signal Processing and Control)接受的论文中进行了描述。 您可以从看到该数据集使用非常简单的在线处理来控制3D图形。 此外,重新连接的效果为。 <说明> 在set_config.m中更改目录并下载getxxfeat.m之后,可以使用此代码。 该项目有四个文件夹: 手势动作每个前臂基本动作有8部短片 数据 来自5个主题的30天EMG数据 csv文件(每个数据具有1.5-s信息) D表示天 M表示运动标签(例如,M1表示静止状态,M2表示手腕弯曲) T表示试验次数 代码该文件夹具有一个名为main_script的主m.file,该文件使用: set_config 预处理 extract_feature 您可以从以下文件中获取以下m.files: getrmsfeat getmavfeat getzcfeat getsscfeat 喝彩 ar 盘中 plot_figure6_and_figure7
2021-11-20 13:52:58 145.67MB 系统开源
1
IMX385驱动代码,有需要的可以下载,谢谢
2021-11-20 12:39:21 26KB IMX385驱动代码 驱动代码 sensor驱动
1
由于全球水污染日益增加,因此随着物联网(IoT)环境中无线传感器网络(WSN)技术的发展,水质监控的实施变得有效而高效。 水质监测是通过实时数据采集,传输和处理进行远程监测。 本文提出了一种可重新配置的传感器接口设备,用于通过物联网环境监测水质系统,以开发智能水质监测系统(SWQM)。 我们正在使用现场可编程阵列(FPGA)设计板,传感器,基于Zigbee的无线通信模块和个人计算机。 FPGA开发板是开发系统的核心组件,它使用Quartus – II软件和Q sys工具通过VHDL(超高速集成电路硬件描述语言)进行编程,并使用C语言进行编程。 我们正在从多个不同的传感器节点高速并行地实时考虑水数据的六个参数,例如水的pH值,水位,浊度,湿度,水表面的二氧化碳(CO2)和水温。
2021-11-18 23:24:36 616KB Wireless Sensor Network (WSN);
1
OV2710的详细规格数,寄存器设定,以及原厂调好的大厂出货的SENSOR设定,VGA,720,1080
2021-11-18 20:47:28 785KB SENSOR OV2710
1
bsec_bme680_linux:使用Linux上的BSEC库读取BME680传感器(例如Raspberry Pi)
2021-11-18 16:42:28 7KB linux raspberry-pi air sensor
1
温度传感器节点红色演示 使用温度传感器和 Node Red 的演示项目
2021-11-15 17:22:29 1KB JavaScript
1
行人跟踪使用LiDAR传感器 客观的 利用来自LIDAR测量的传感器数据进行卡尔曼滤波器的行人跟踪。 状态预测 x'= Fx +ν方程为我们进行了这些预测计算。 过程噪声是指预测步骤中的不确定性。 我们假设物体以恒定的速度行进,但实际上,物体可能会加速或减速。 ν〜N(0,Q)符号将过程噪声定义为均值为零且协方差为Q的高斯分布。 当我们在一秒钟后预测位置时,不确定性就会增加。 P'= FPFT + Q表示不确定性的增加。 因为我们的状态向量仅跟踪位置和速度,所以我们将加速度建模为随机噪声。 Q矩阵包含时间Δt,以说明随着时间的流逝,我们对位置和速度的不确定性越来越大。 因此,随着Δt的增加,我们向状态协方差矩阵P添加更多不确定性。 结合先前推导的2D位置和2D速度方程式,我们得到: 由于加速度是未知的,因此我们可以将其添加到噪声分量中,并且该随机噪声将被解析地表示为上面得出的方程
2021-11-13 20:44:07 6KB C++
1
运动目标检测与跟踪matlab代码SFND RADAR目标生成和检测 在本课程中,我们将详细讨论雷达对自动驾驶汽车产生感知所需要的过程。 从头开始,我们将基于雷达的基本原理进行构建。 我们将介绍信号传播和目标响应生成。 然后,我们将深入研究定位目标实时所需的Range Doppler生成。 我们将在MATLAB中编写代码以生成目标场景,创建FMCW波形,然后使用诸如FFT,CFAR之类的处理技术创建距离多普勒地图(RDM)。 对于项目的第二部分,我们将使用基于MATLAB的Driving Scenario Simulator进行部署,以部署多对象跟踪和聚类并研究结果。 本地运行的依赖项 要完成该项目,您还需要在计算机上下载MATLAB(如果尚未下载)。 首先,您可以按照以下步骤操作: 如果您还没有MathWorks帐户,请创建一个。 在继续执行步骤2之前,请确保验证电子邮件(检查垃圾邮件/垃圾邮件文件夹)。 下载安装程序。 运行安装程序–它会指导您完成适用于您的操作系统的步骤。
2021-11-10 22:42:29 286KB 系统开源
1