**Qt项目介绍** 本文将深入探讨使用Qt框架开发的一个实用串口调试助手工具。这个项目不仅提供了基础的串口通信参数设置,还包含了文件发送、中文字符支持、16进制传输以及时间戳记录等功能,使得它在工程实践中非常有用。同时,该项目也适合作为学习和提升Qt编程技能的实践案例。 **串口通信基础** 串口通信是设备间通过串行接口进行数据传输的方式,常见的串口标准有RS-232、RS-485等。在Qt中,我们可以利用QSerialPort类来实现串口操作。QSerialPort类提供了打开、关闭串口,设置波特率、数据位、停止位、校验位以及读写数据的方法。 **Qt串口调试助手功能详解** 1. **基本通信参数设置**:用户可以设置串口的波特率(如9600、115200等)、数据位(通常为8位)、停止位(1位或2位)和校验位(无校验、奇校验、偶校验)。这些参数应根据与目标设备的通信协议进行配置。 2. **文件发送**:该功能允许用户选择本地文件并将其内容通过串口发送出去。这在需要批量发送大量数据或执行特定命令序列时非常有用。文件内容可以是文本格式,也可以是二进制数据。 3. **中文支持**:在串口通信中处理中文字符可能需要特殊处理,因为中文字符通常占用多个字节。Qt的QTextCodec类可以帮助我们正确编码和解码中文字符,确保它们在串口通信中能被正确识别。 4. **16进制发送**:除了文本模式,调试助手还支持16进制模式发送数据。在某些场合,如调试底层硬件或传输二进制数据时,16进制模式更为方便。 5. **获取当前时间戳**:在接收和发送数据时记录时间戳,可以帮助开发者分析数据传输的实时性,了解数据到达和发送的具体时刻。 6. **保存接收数据**:接收的数据可以被保存到文件中,以便后续分析或记录日志。这通常涉及文件I/O操作,Qt提供了QFile和QTextStream等类方便进行文件读写。 7. **辅助计算器**:作为一个附加功能,项目中可能包含了一个简单的计算器,帮助用户快速计算相关数值,进一步增强其实用性。 **Qt编程实践** 这个项目对于Qt初学者来说是一个很好的实践平台,涵盖了图形界面设计、事件处理、文件操作、网络通信等多个方面。通过这个项目,你可以学习如何使用QSerialPort进行串口通信,如何设计和布局UI,以及如何结合信号和槽机制实现界面与逻辑的交互。 "Qt项目(1)Qt实现串口调试助手"是一个功能丰富的串口通信工具,不仅在实际工作中有其价值,也是提升Qt编程技能的宝贵资源。无论是用于实际工程还是学习提升,都值得深入研究和实践。
2024-08-02 17:55:58 59KB
1
三菱iQ-R系列PLC控制系统项目全套资料 系统才用三菱iQ-R系列PLC,采用R04CPU ,其中涉及到轴控制, MODBUS通讯,ETHERNET通讯,模拟量输入,数字量输入输出。 PLC程序采用ST语言和梯形图编写。 触摸屏采用维纶通的。 提供项目全套资料。
2024-08-01 15:14:54 1.5MB
1
STM32采集声音/噪音传感器数据测试程序: 1、使用杜邦线连接声音传感器到开发板(声音传感器VCC连接开发板5V,声音传感器GND连接开发板GND,声音传感器OUT连接开发板PB6); 2、下载程序后,制造声音达到声音传感器有效分贝时,开发板上用户指示灯LD2(PB9引脚)亮;反之,开发板用户指示灯LD2灭。 3、代码使用KEIL开发,当前在STM32F103C8T6运行,如果是STM32F103其他型号芯片,依然适用,请自行更改KEIL芯片型号以及FLASH容量即可。 4、软、硬件技术服务:349014857@qq.com;
2024-07-30 10:57:55 4.69MB stm32 源码软件 arm
1
基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip基于pytorch框架实现的yolov3项目源码.zip
2024-07-30 00:55:43 111.99MB pytorch pytorch
1
【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
2024-07-29 21:40:38 16.82MB 毕业设计 springboot
1
SPENCER多模式人员检测和跟踪框架 在欧盟FP7项目的背景下开发的针对移动机器人的基于ROS的多模式人员和组检测和跟踪框架。 功能一览 多模式检测:在一个通用框架中的多个RGB-D和2D激光检测器。 人员跟踪:基于最近邻居数据关联的高效跟踪器。 社会关系:通过连贯的运动指标估算人与人之间的空间关系。 群体追踪:根据人群的社会关系来检测和追踪人群。 鲁棒性:各种扩展功能(例如IMM,跟踪启动逻辑和高召回检测器输入)都使人员跟踪器即使在非常动态的环境中也能相对鲁棒地工作。 实时:在游戏笔记本电脑上以20-30 Hz的频率运行,跟踪器本身仅需要1个CPU内核的10%。 可扩展和可重用:结构良好的ROS消息类型和明确定义的接口使集成自定义检测和跟踪组件变得容易。 强大的可视化:一系列可重复使用的RViz插件,可通过单击鼠标进行配置,以及用于生成动画(2D)SVG文件的脚本。 评
2024-07-29 16:18:22 4.98MB
1
在本项目中,我们将深入探讨如何使用TensorRT部署SuperPoint和SuperGlue算法,这是一个优质的算法部署实战案例。TensorRT是NVIDIA推出的一款高性能的深度学习推理(Inference)优化和运行时库,它能够为深度学习模型提供高效的运行速度和低延迟。SuperPoint和SuperGlue是计算机视觉领域的关键算法,分别用于特征检测与描述以及特征匹配。 让我们了解SuperPoint算法。SuperPoint是一种自监督学习的局部特征检测和描述符方法,它的设计目标是能够在各种复杂的环境和光照条件下稳定地提取出图像的关键点,并为其分配独特的描述符。该算法通过对比度度量、响应度选择和几何一致性检查等步骤,确保了所提取特征的质量和稳定性。 接下来是SuperGlue,它是一个两阶段的特征匹配框架。在第一阶段,SuperGlue利用图神经网络(GNN)来学习特征之间的关系,以增强匹配的准确性。第二阶段,它采用了一种基于注意力的匹配策略,根据特征之间的相似性进行加权,从而提高匹配的鲁棒性。SuperGlue在图像配对、姿态估计和三维重建等领域有着广泛的应用。 TensorRT在部署SuperPoint和SuperGlue时的角色至关重要。它通过将深度学习模型转换为高效的C++接口,可以显著加速推理过程。TensorRT支持模型的优化,包括量化、裁剪和层融合,这些技术有助于减少计算资源的需求,同时保持模型的精度。在实际应用中,这通常意味着更快的处理速度和更低的功耗。 在实战项目中,我们首先需要将训练好的SuperPoint和SuperGlue模型转换为TensorRT兼容的格式。这通常涉及模型的序列化,以便TensorRT可以理解和优化模型的计算图。然后,我们需要编写C++或Python代码来加载模型,处理输入图像,执行推理,并处理输出结果。在这个过程中,我们需要注意数据类型的转换,以及输入和输出的尺寸和格式,以确保与TensorRT的接口匹配。 为了验证部署效果,我们需要使用测试数据集来评估模型的性能。这可能包括计算特征检测的速度、特征匹配的精度等指标。此外,我们还需要关注模型在不同硬件平台上的表现,比如GPU、CPU或者嵌入式设备,以确定最合适的部署方案。 这个项目将指导你如何利用TensorRT高效地部署SuperPoint和SuperGlue算法,实现高质量的特征检测和匹配。通过实践,你将掌握深度学习模型优化、推理引擎使用以及性能调优等关键技能,这对于在实际的计算机视觉项目中应用这些先进算法具有很高的价值。
2024-07-28 11:48:41 100.54MB TensorRT SuperPoint SuperGlue 优质项目
1
介绍      p2pspider 是一个 DHT 爬虫 BT 客户端的结合体, 从全球 DHT 网络里"嗅探"人们正在下载的资源, 并把资源的metadata(种子的主要信息)从远程 BT 客户端下载, 并生成资源磁力链接. 通过磁力链接, 你就可以下载到资源文件.用途你可以使用 p2pspider 打造私人种子库(比如: 海盗湾), 也可拿它做资源数据挖掘与分析。安装git clone https://github.com/Fuck-You-GFW/p2pspider使用使用前, 请确保你的 node 版本 >=0.12.0.'use strict';var P2PSpider = require('../lib');var p2p = P2PSpider({     nodesMaxSize: 200,   // be careful     maxConnections: 400, // be careful     timeout: 5000});p2p.ignore(function (infohash, rinfo, callback) {    // false => always to download the metadata even though the metadata is exists.     var theInfohashIsExistsInDatabase = false;    callback(theInfohashIsExistsInDatabase); });p2p.on('metadata', function (metadata) {    // At here, you can extract data and save into database.     console.log(metadata); });p2p.listen(6881, '0.0.0.0');目前只能放在有公网 IP 的主机上执行, 或者路由器设置端口转发(默认6881, UDP协议).贡献代码     fork 并拉取代码后,执行 npm install 安装依赖, 然后执行 node test/index.js 就可以看到测试效果。作者博客介绍:http://www.cnblogs.com/52web/p/5253697.html 标签:爬虫
2024-07-27 16:10:56 258KB 开源项目
1
数据科学 项目1:足球运动员的评分( ) 使用来自欧洲足球数据库的数据并建立了回归模型,以基于各种属性预测足球运动员的整体评分。 使用Flask构建了基本的API,并将其部署到GCP,Herolu和Pivotal云平台中。 项目2:预测一个人每年的收入是否超过5万( ) 建立了几个分类模型,以预测一个人每年从经典成人数据集中赚取的收入是否超过5万。 建立了KNN,决策树,随机森林和XGBoost模型,并通过比较各自的AUC和准确性得分,比较了哪一种最适合数据集。 项目3:Zomato_EDA( ) 是否在Zomato印度餐厅数据集上进行了广泛的EDA分析。 zomato探索性数据分析旨在为美食家找到最佳的餐馆,并在他们所在的地区物有所值。 它还有助于在当地找到所需的美食。
2024-07-26 12:10:55 7.86MB python flask jupyter-notebook JupyterNotebook
1
项目描述 下面是我的一些java项目练习代码,分享给大家,希望能够和大家一起提高! Java项目 swagger2-启动-启动器 SpringBoot-Shiro 秒杀 沃斯2.0 tomcatServlet3.0 Web服务器 ServletAjax JspChat jsp 聊天室 eStore图书馆系统 checkcode Java 验证码生成器 IMOOCSpider 简单的互联网蜘蛛 最后的 如果上述任何项目能够帮助您,请点击右上角网站的“关注”。谢谢你!
2024-07-25 19:04:10 34.46MB spring boot spring boot
1