利用有限的标记样本,将其作为硬性约束加入矩阵分解中;同时构建局部邻域graph,挖掘数据的流形结构并保持局部的不变特性,提出一种基于矩阵分解的高光谱数据特征提取(FEMF)方法.经过矩阵分解,使得原始高维光谱特征空间中相近的数据在低维空间中仍然相近,而相同类别的标记数据则被投影到同一个位置.这样的低维表示具有更强的判别性能,从而得到更好的分类和聚类效果.该方法的求解过程是非凸规划问题,同时给出了一个乘性更新规则获得局部优化解.最后,对真实高光谱数据进行特征提取验证了该方法的有效性.
2021-12-16 12:40:51 1.8MB 高光谱; 遥感; 流形; 特征提取;
1
基于半监督广义学习系统的高光谱图像分类
2021-12-15 14:55:31 640KB 研究论文
1
林木健康分析工具 创建整个森林区域健康程度的空间分布图 用于检测病虫害以及枯萎病的发生情况,也可以用于评估某地区的木材收获量 绿度:表面绿色植被的分布; 叶绿素:标识类胡萝卜素以及花青素的含量; 冠层水分含量:标识水分含量; 光使用效率:标识森林生长率;
2021-12-15 00:09:16 3.81MB ENVI 高光谱
1
为解决高光谱数据维度高、波段之间相关性强、获取大量监督信息费时费力的问题,对高光谱图像的分类进行研究。半监督分类方法是基于传统的机器学习的一种分类方法,它可以利用少量带标签的监督信息和大量无监督信息解决获取大量监督信息问题。将分类精度高、分类时间长的孪生支持向量机分类方法与迭代速度快、收敛速度快的的
2021-12-13 17:15:35 656KB 现代电子技术
1
应用ENVI 进行高光谱波谱分析和地物识别
2021-12-12 17:01:36 1.26MB envi,高光谱,地物识别
1
图像处理分析 对于HJ-1小卫星高光谱图像的处理方法
2021-12-12 16:45:56 708KB 高光谱
1
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度.
1
为了充分利用高光谱图像的光谱信息和空间结构信息,提出了一种新的基于随机森林的高光谱遥感图像分类方法,首先,利用主成分分析降低数据的维数,并对主成分进行独立成分分析提取其光谱特征,同时消除像元的空间相关性,再采用形态学分析提取像元的空间结构特征,然后,根据像元的谱域和空域特征分别构造随机森林,并引入空间连续性对像元点的预测结果进行约束修正,最后由投票机制决定最后的分类结果。在AVIRIS和ROSIS高光谱图像上的实验结果表明,所提方法的分类性能要优于传统的高光谱图像分类方法,且分类精度高于基于单一特征的方法。
2021-12-09 16:53:25 567KB 论文研究
1
MNF变换 重要作用 用于判定图像内在的维数 分离数据中的噪声 减少计算量 弥补了主成分分析在高光谱数据处理中的不足 计算时需要输入的参数 统计信息的图像范围 shift diff subset 噪声统计文件(可以用到另一副图像上做变换) MNF统计文件(反变换的时候要用) Mnf变换输出波段选择(根据特征值选择输出波段)
2021-12-07 20:43:26 3.72MB ENVI高光谱
1
matlab图像均衡化的代码从RGB图像进行高光谱重建以实现静脉可视化 我们提出了一种数据驱动的方法来从RGB图像中重建高光谱图像。 该方法基于残差学习方法,该方法可有效捕获数据流形的结构,并考虑到存在于RGB图像中的空间上下文信息以进行光谱重建过程。 提出的RGB到高光谱的转换方法可以处理在不同照明下拍摄的图像,这对于实际应用来说是重要的功能。 所提出的方法是通用的,并且可以支持各种应用。 为了展示所提出的转换方法的价值,我们设计并评估了静脉可视化应用程序。 我们使用商用高光谱相机收集了该领域最早的高光谱数据集之一; 我们将此数据集提供给其他研究人员。 我们使用此数据集来训练我们的深度学习模型,并作为比较的基础。 我们的实验结果表明,该方法可提供准确的静脉可视化和定位结果。 数据集结构 下载链接 - 该数据集由成对的207张RGB图像及其相应的超立方体组成。 高光谱图像包含从原始数据中提取的Matlab( .mat )格式的光谱范围为820-920nm的34个波段。 整个数据集包含来自13个参与者的信息(图像)。 10个参与者的数据用于培训,其余3个参与者的数据用于测试/验证。 文件
2021-12-01 14:34:53 6.25MB 系统开源
1