上传者: 38570296
|
上传时间: 2021-12-16 12:40:51
|
文件大小: 1.8MB
|
文件类型: -
利用有限的标记样本,将其作为硬性约束加入矩阵分解中;同时构建局部邻域graph,挖掘数据的流形结构并保持局部的不变特性,提出一种基于矩阵分解的高光谱数据特征提取(FEMF)方法.经过矩阵分解,使得原始高维光谱特征空间中相近的数据在低维空间中仍然相近,而相同类别的标记数据则被投影到同一个位置.这样的低维表示具有更强的判别性能,从而得到更好的分类和聚类效果.该方法的求解过程是非凸规划问题,同时给出了一个乘性更新规则获得局部优化解.最后,对真实高光谱数据进行特征提取验证了该方法的有效性.