论文研究-基于小波-NAR神经网络的气象要素时间序列预测与天气指数彩虹期权估值.pdf,
本文基于小波-NAR神经网络技术,提出气象要素时间序列预测与天气指数彩虹期权估值的原理与方法,同时采用2000——2014年悉尼日均气温和日降雨量数据,进行气象预测与天气期权估值.结果显示:小波-NAR神经网络因灵活的非线性动态结构较好地反映了气象变化特征,其预测与估值效果优于其他模型;该天气期权价值形成中的非线性特征取决于五种经济效应.科学预测天气和估计天气期权价值,开发天气衍生品,可挖掘天气不确定性的经济价值,弱化其对天气敏感产业的影响.
2022-12-14 20:52:58
1.54MB
论文研究
1