Python数学建模算法与应用源码,含:线性规划、排队论模型、微分方程建模、时间序列模型、支持向量机、预测方法、层次分析法

上传者: 2301_76484015 | 上传时间: 2023-09-04 13:31:12 | 文件大小: 97KB | 文件类型: ZIP
数字化信息社会具有的两个特征:一是计算机技术的迅速发展与广发应用;二是数学的应用向其它领域渗透。随着计算机技术的飞速发展,科学计算的深度不断扩展,科学理论与工业应用不断耦合,更多的算法不断地被反复证明与改进。数学建模是对现实世界的特定对象,为了特定的目的,根据特有的内在规律,对其进行必要的抽象、归纳、假设和简化,运用适当的数学工具建立的一个数学结构 含:线性规划、排队论模型、微分方程建模、时间序列模型、支持向量机、预测方法、层次分析法

文件下载

资源详情

[{"title":"( 32 个子文件 97KB ) Python数学建模算法与应用源码,含:线性规划、排队论模型、微分方程建模、时间序列模型、支持向量机、预测方法、层次分析法","children":[{"title":"Mathematical_Modeling-master","children":[{"title":"__init__.py <span style='color:#111;'> 59B </span>","children":null,"spread":false},{"title":"第31章 支持向量机","children":[{"title":"diagnose_breast_cancer.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"Province_Classify.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"fenlei.txt <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false},{"title":"cancerdata.txt <span style='color:#111;'> 121.26KB </span>","children":null,"spread":false},{"title":"乳腺癌的诊断预测结果.xlsx <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false}],"spread":true},{"title":"知识扩展 算法模型(可调用)","children":[{"title":"BP神经网络模型","children":[{"title":"jingliu.txt <span style='color:#111;'> 455B </span>","children":null,"spread":false},{"title":"BP_Neural_Network.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"说明.txt <span style='color:#111;'> 113B </span>","children":null,"spread":false}],"spread":true},{"title":"附件 流程图","children":[{"title":"流程图.py <span style='color:#111;'> 508B </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"Mathematical_Modeling.iml <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 294B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 47B </span>","children":null,"spread":false}],"spread":true},{"title":"第1章 线性规划","children":[{"title":"第一章 线性规划.md <span style='color:#111;'> 93B </span>","children":null,"spread":false},{"title":"Linear_Programming_machine.py <span style='color:#111;'> 977B </span>","children":null,"spread":false}],"spread":true},{"title":"第13章 微分方程建模","children":[{"title":"us_population_model.py <span style='color:#111;'> 187B </span>","children":null,"spread":false},{"title":"data4.txt <span style='color:#111;'> 224B </span>","children":null,"spread":false}],"spread":true},{"title":"第6章 排队论模型","children":[{"title":"排队论模型.ipynb <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"单服务台模型.py <span style='color:#111;'> 69B </span>","children":null,"spread":false}],"spread":true},{"title":"知识扩展 预测方法","children":[{"title":"zhu.txt <span style='color:#111;'> 615B </span>","children":null,"spread":false},{"title":"multiple_linear_regression.py <span style='color:#111;'> 880B </span>","children":null,"spread":false},{"title":"jingliu.txt <span style='color:#111;'> 455B </span>","children":null,"spread":false},{"title":"Digraph.gv.pdf <span style='color:#111;'> 18.85KB </span>","children":null,"spread":false},{"title":"GM11.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"Digraph.gv <span style='color:#111;'> 367B </span>","children":null,"spread":false},{"title":"BP_Neural_Network.py <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"知识扩展 层次分析法","children":[{"title":"层次分析法.ipynb <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"第24章 时间序列模型","children":[{"title":"移动平均法.py <span style='color:#111;'> 478B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 743B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明