Bayesian Networks Variable Elimination Algorithm:贝叶斯网络变量消除算法.ppt
2022-05-18 22:05:16 1.54MB 算法 网络 文档资料
介绍人工神经元网络的书,理论概念比较详细
2022-05-16 20:27:29 4.36MB Neural Networks
1
人脸识别 通过深度学习实现的人脸检测和识别系统。 人脸数据集 非人脸数据集 带有滑动窗口的人脸检测
2022-05-16 19:41:53 648.25MB deep-neural-networks tensorflow keras python3
1
Cisco Enterprise Wireless Networks 300-430.pdf
2022-05-16 12:02:34 193KB 文档资料 cisco
深度压缩压缩深度神经网络,并带有经过修剪训练的量化和霍夫曼算法 这是文件的pytorch实现。 Pytorch版本:0.4.0
2022-05-16 09:58:23 6KB deep-learning pytorch Python
1
Yahoo的开放NSFW模型的Tensorflow实现 该存储库包含以tensorflow重写的的实现。 原始重量已使用提取 。 您可以在data/open_nsfw-weights.npy找到它们。 先决条件 所有代码均应与Python 3.6和Tensorflow 1.x (经1.12测试)兼容。 该模型的实现可以在model.py找到。 用法 > python classify_nsfw.py -m data/open_nsfw-weights.npy test.jpg Results for 'test.jpg' SFW score: 0.9355766177177429 NSF
2022-05-15 21:11:07 21.11MB deep-neural-networks caffe deep-learning tensorflow
1
具有并行计算的卷积神经网络的C ++库(openMP,CUDA,MPI) 用法: g ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet ./lenet 这是模型的多线程版本(具有数据并行性),您可以使用以下方法更改线程数: 导出OMP_NUM_THREADS = 4 要使用MPI版本的代码,您需要使用mpic ++进行编译: mpic ++ -std = c ++ 11 -fopenmp lenet.cpp -o lenet 您可以在多节点系统上运行它! 创建自己的网络 您可以通过派生Model类并使用addLayer()方法按顺序添加所有图层来创建自己的深度神经网络类。 您还可以通过扩展ActivationLayer来引入自己的激活层。 您可以通过扩展LossFunction类来创建自定义Loss函数。 工作正在进行中 使用以下方法进
2022-05-13 18:00:15 10.98MB C++
1
可视化分析RNN的状态变化 有关LSTMVis,介绍视频以及实时演示链接的更多信息,请访问 还可以在或在线演示中查看我们关于序列到序列模型的新工作,为 V2.1中的更改 更新到Python 3.7 ++(感谢@nneophyt) V2的变化 新设计和服务器后端 隐藏状态轨道的离散缩放 添加了用于元数据和预测的注释轨道 为张量流添加了训练和提取工作流 客户端现在是ES6和D3v4 客户端的一些性能增强 添加了Keras教程(感谢Mohammadreza Ebrahimi) 安装 请使用python 3.7或更高版本来安装LSTMVis。 克隆存储库: git clone https://github.com/HendrikStrobelt/LSTMVis.git ; cd LSTMVis 使用安装python(服务器端)要求: python -m venv venv3 sour
1
图卷积网络用于高光谱图像分类 , ,,,, 该工具箱中的代码实现了 。 更具体地,其详细如下。 引文 如果此代码对您的研究有用且有帮助,请引用论文。 D. Hong,L。Gao,J。Yao,B。Zhang,A。Plaza,J。Chanussot。 用于高光谱图像分类的图卷积网络,IEEE Trans。 Geosci。 遥感,2020,DOI:10.1109 / TGRS.2020.3015157。 @article{hong2020graph, title = {Graph Convolutional Networks for Hyperspectral Image Classification}, author = {D. Hong and L. Gao and J. Yao and B. Zhang and A. Plaza and J. Chanusso
2022-05-10 20:53:01 41.38MB Python
1
1. Abstract 协同注意力机制在最近几年广泛用于 VQA 领域,以往的协同注意力多是先计算各模态的注意力分布信息,再建立不同模态间的相关性,这样忽略了模态内的相关性。本篇论文在 Self-Attention 机制的基础上,应用 Transformer 设计 MCA 模块,通过级联的方式搭建深层模块化网络 MCAN 2. Model 2.1 MCA Self-Attention (SA) 用于发掘模块内的关系,Guided-Attention (GA) 用于发掘模块间的关联,模块的设计遵循 Transformer 一文中的 scaled dot-product attention 模块
2022-05-09 20:57:13 795KB al ar attention
1
服务器状态检查中...