建筑视觉
Isola等人在论文“使用条件对抗网络进行图像到图像转换”( )中详细介绍了GAN的实现。 为CMU 10-401机器学习课程最终项目(2017年Spring)创建。
写上去
或阅读以下内容。
使用GAN从草图生成建筑的真实感图像
抽象的
将给定的输入图像转换为另一个转换后的输出图像的想法是一个有趣的概念。 我们在此项目中采用的方法是使用生成对抗网络(GAN)学习可以执行此任务的生成模型。 这种方法的好处在于,可以从数据中学习损失函数,因此可以将同一网络应用于各种不同的图像到图像的转换问题。 我们介绍了我们的网络体系结构以及使用这种方法将猫,鞋子和建筑物的草图转换为逼真的对象的结果。
介绍
我们希望了解如何从图像的简单草图中生成逼真的图像。 为此,我们对“有条件对抗网络的图像到图像转换”(Isola等人,2016)中描述的算法进行了批评和实施。 本文研究了如何将条件对抗网络用于
1