svm结果读取,对01序列进行统计,并且输出统计结果,默认为window和other
2022-12-21 00:57:43 2KB svm
1
为克服环境带来的影响,借鉴了近年来在目标检测研究中应用较多的梯度方向直方图(HOG)技术,将其用于手势识别中。这种方法使得基于视觉的手势识别对环境不再敏感,得到了较好的识别效果。
2022-12-20 18:43:17 1.31MB HOG SVM 手势识别
1
基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于PSO-SVM粒子群优化支持向量机的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。
python分别实现基于神经网络、线性回归、SVM方法预测学生成绩源码+数据集.zip 【完成的任务】 根据提供一组包含学生成绩与校园卡消费记录的数据。我对数据进行预处理后,分别采用神经网络、线性回归和SVM方法对学生学习成绩进行了回归。准确率为78%。 结果表明,学生经常去图书馆自习、每天在食堂吃饭不超过16块且前3学期学习成绩达到优秀的学生,在第4学期很可能再次达到优秀。该结果只针对次数据集。
2022-12-19 18:26:15 12.19MB SVM 机器学习 神经网络 线性回归
基于CNN和SVM的设备审查实现
2022-12-19 17:00:35 200.52MB cnn svm 网络安全审查 设备安全检测
基于相空间重构(PSR)和支持向量机(SVM)算法本文提出了一种利用单一变量进行化工过程故障诊断的方法。首先进行变量筛选,然后对筛选出的关键变量进行相空间重构,再利用SVM对重构后的数据进行故障分类。通过对TE(Tennessee Eastman)过程几类故障进行仿真测试,结果表明在单一故障和多故障情况下,本方法均可实现化工过程的单变量故障诊断;与传统SVM方法相比,相空间重构可有效提高诊断正确率。此方法可为建立简单而有效的单变量故障诊断系统提供理论依据。
2022-12-17 22:00:18 267KB 工程技术 论文
1
Support_Vecor_Machine_Implementation 借助梯度下降算法实现svm实现,以减少错误函数,仅使用numpy和matplotlib来实现它。
2022-12-17 20:35:16 2KB Python
1
比较了现今应用比较广泛的3种支持向量机( SVM)参数优化方法. 具体分析了网格法、遗传算法和粒子群算 法在 SVM参数优化方面的性能以及优缺点,提出了一种改进的网格法. 先在较大范围内进行搜索,在得到的优化结果 附近区域再进行精确搜索. 实验表明改进的网格搜索法耗时短,更适用于有时间要求的说话人识别应用中.
2022-12-16 13:52:49 422KB 工程技术 论文
1
机器学习 深度学习 人工智能代码(python)用SVM实现人脸识别 附带结果
2022-12-14 21:05:41 290KB python 支持向量机 人工智能 机器学习
1
统计学期末课程作业_python自定义实现CNN_KNN_NN_SVM网络模型源码+说明文件.zip 【CNN实现】 cnn1.py: LeNet+ReLU; cnn2.py: 在cnn1的基础上加宽全连接层; cnn3.py: 在cnn2的基础上修改卷积核; cnn4.py: 在cnn3的基础上修改卷积核; cnn5.py: 在cnn4的基础上加宽全连接层; cnn6.py: 在cnn3的基础上加宽全连接层; cnn7.py: 在cnn6的基础上加宽全连接层; cnn8.py: 在cnn6的基础上加入Dropout层; 等等 【KNN实现】 knn.py: 标准KNN,k=1,3,5,7,9; 【NN实现】 nn1.py: 784-800-15 (修改激活函数); nn2.py: 784-2500-2000-1500-1000-500-15 (修改激活函数); nn3.py: 在nn2的基础上修改数据预处理方式; 【SVM】 svm.py: 核函数(linear,rbf,poly,sigmoid); 另包含【运行指南】和【最终选择模型】
2022-12-14 16:26:40 509.6MB CNN KNN NN SVM