针对基于元数据或传统主题图的知识组织模式没有实现知识的多层次多粒度表示,以及知识融合过程中相似性算法准确性不高而影响融合质量的问题,结合全信息理论与扩展主题图结构特点及语义信息,提出了面向多源知识融合的扩展主题图相似性算法(ETMSC)和阈值选取的相关性、层次对应和实验确定三原则.该算法综合了语法、语义和语用的相似性,扩展了主题图元素间组成结构上的相似性,同时充分考虑了涵义及所处语境的相似性.主题图相似性的判别准则与阈值有关,阈值的确定与数据集相关.实验结果表明,ETMSC算法与单纯基于语法或语义的相似性算法相比,准确性提高了9.2%~11.1%.
1