给定人脸照片完成具体的情绪识别,选手需要根据训练集数据构建情绪识别任务,并对测试集图像进行预测,识别人脸的7种情绪。
2024-04-09 09:24:26 373.67MB 人脸识别
1
1. Matlab实现粒子群优化算法优化BP神经网络的数据回归预测(完整源码和数据) 2. 多变量输入,单变量输出,数据回归预测 3. 评价指标包括:R2、MAE、MSE、RMSE 4. 包括拟合效果图和散点图 5. Excel数据,暂无版本限制,推荐2018B及以上版本
2024-04-08 19:42:21 15KB 机器学习 神经网络 粒子群算法 Matlab
1
Python课程设计—基于卷积神经网络手写数字识别系统,经老师指导通过的高分项目。 选题 利用numpy完成手写数字数据集的识别,完成多分类问题,搭建神经网络,并且完成模型的训练以及性能评估,可视化数据 用到的知识 sklearn 数据集的提取分割 yaml配置文件使用 numpy实现各个神经层 参数初值选择 梯度下降方法选择 sklearn 分类模型评估 matplotlib数据可视化 设计模式 Markdown写报告
2024-04-08 17:06:06 559KB python课程设计 卷积神经网络
基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CN
2024-04-08 17:05:15 49.59MB 毕业设计 python 手写数字识别
alexnet.mlpkginstall,解压后用matlab打开alexnet.mlpkginstall,(我的是2021a,低一点版本也能用,matlab7.1之类太低了就不知道了)(可以放在matlab的工作目录中)打开后会让你注册一下matlab,(不需要正版)注册安装后就可以使用训练好的网络(非正版也可以用)。苹果分类数据集中用到了已经训练好的AlexNet网络来做特征提取,需要这个包,否则可能需要训练一个编解码器来做特征提取,太麻烦。
2024-04-06 20:30:38 6KB matlab 网络 神经网络 特征提取
1
Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码)
2024-04-04 09:49:24 255KB python lstm 神经网络
1
基于径向基神经网络的数据回归预测MATLAB代码
2024-04-03 19:13:20 14KB matlab 神经网络
1
MatlabBP神经网络预测实例附代码+数据,BP神经网络是前向神经网络,但是改变权值系数是个反向调整,特提供BP神经网络输出结果参与建模,供大家对神经网络进行学习和交流。
2024-04-03 15:32:46 547KB Matlab BP神经网络预测 神经网络
1
matlab代码设置参数范围迪普考夫曼 神经网络学习库普曼特征函数 Bethany Lusch,J。Nathan Kutz和Steven L.Brunton撰写的论文代码 运行代码: 克隆存储库。 在数据目录中,通过在Matlab中运行DiscreteSpectrumExample,Pendulum,FluidFlowOnAttractor和/或FluidFlowBox来重新创建所需的数据集。 (或通过电子邮件询问数据集) 返回主目录,使用python运行所需的实验。 有关运行Python实验的注意事项: 建议使用GPU,但不是必需的。 该代码可以在GPU或CPU上运行,而无需进行任何更改。 本文包含四个数据集的结果。 这些是运行脚本进行随机参数搜索(DiscreteSpectrumExampleExperiment.py,PendulumExperiment.py,FluidFlowOnAttractorExperiment.py和FluidFlowBoxExperiment.py)的最佳结果。 要使用产生论文结果的特定参数而不是进行参数搜索来训练网络,请运行DiscreteSpec
2024-04-02 16:58:37 7.18MB 系统开源
1
PyTorch中的MeshCNN SIGGRAPH 2019 MeshCNN是用于3D三角形网格的通用深度神经网络,可用于诸如3D形状分类或分割之类的任务。 该框架包括直接应用于网格边缘的卷积,池化和解池层。 该代码由和在支持下编写。 入门 安装 克隆此仓库: git clone https://github.com/ranahanocka/MeshCNN.git cd MeshCNN 安装依赖项: 1.2版。 可选: 用于训练图。 通过新的conda环境conda env create -f environment.yml (创建一个名为meshcnn的环境) SHREC上的3D形状分类 下载数据集 bash ./scripts/shrec/get_data.sh 运行训练(如果使用conda env首先激活env,例如source activate meshcnn ) bash ./scripts/shrec/train.sh 要查看训练损失图,请在另一个终端中运行tensorboard --logdir runs并单击 。 运行测试并导出中间池网格: bas
2024-04-02 16:20:14 3.54MB machine-learning computer-graphics pytorch mesh
1