使用随机森林、SVM、线性回归等常用机器学习模型预测肺癌患病数据集的存活时长。 随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面。
2022-12-28 11:27:16 650KB 机器学习 人工智能 SVM 随机森林
1
使用KNN、朴素贝叶斯、SVM、线性回归等算法解决简单的分类问题 源码中包括线性归回算法、KNN算法、朴素贝叶斯算法及SVM算法的使用方法演示,以及对数据的预处理、训练建模过程。 实现对水果数据集的分析,最终将同类水果进行分类。
2022-12-28 11:27:15 227KB 机器学习 分类 算法
1
基于SVM多特征融合的微表情识别python源码+项目说明.zip 将上述文件与main.py放在同一目录下,直接运行main.py: a. 从同目录下的CASME II文件夹中提取数据,文件夹的结构为CASME II/subject_name/ep_name/image b. 程序所需文件在CASME II文件夹下,分别为CASME2.xlsx, shape_predictor_68_face_landmarks.dat, UniformLBP8.txt c. 程序将CASME II中第一个表情的第一张图片作为标准面部图像,对所有图像序列进行裁剪与配准,得到192*192的图像序列 d. 将配准后的结果存入result/lwm_result.npy中 e. 随后程序对图像序列进行动作放大,其中放大频率区间为[0.2Hz, 2.4Hz], 放大因子为8 f. 随后对图像序列进行时序插值,目标帧数为10帧 g. 随后对图像序列提取LBP-TOP、3DHOG、HOOF特征,存放于result/features/LBP_feature.npy (或HOG_feature.npy, HOOF_
MATLAB实现SSA-SVM麻雀算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
机器学习车牌识别+适用学生党+利用机器学习完成车牌识别+博客链接:https://blog.csdn.net/shooter7/article/details/115433365
2022-12-26 19:31:09 14.66MB 机器学习 课程设计
1
MATLAB实现GWO-SVM灰狼算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现PSO-SVM粒子群算法优化支持向量机多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入15个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
基于SVM的中文邮件分类的项目代码和数据样本集
2022-12-26 12:04:28 1.24MB 支持向量机 分类 算法 机器学习
1
内含Twin Support Vector Machine for Pattern Classification论文及代码复现
2022-12-22 17:26:37 9KB svm twsvm
1
svm结果读取,对01序列进行统计,并且输出统计结果,默认为window和other
2022-12-21 00:57:43 2KB svm
1