使用随机森林、SVM、线性回归等模型预测肺癌患病风险

上传者: zy_dreamer | 上传时间: 2022-12-28 11:27:16 | 文件大小: 650KB | 文件类型: ZIP
使用随机森林、SVM、线性回归等常用机器学习模型预测肺癌患病数据集的存活时长。 随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面。

文件下载

资源详情

[{"title":"( 1 个子文件 650KB ) 使用随机森林、SVM、线性回归等模型预测肺癌患病风险","children":[{"title":"随机森林、SVM、线性回归预测肺癌风险.ipynb <span style='color:#111;'> 943.87KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明