数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:56 18KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:52 14KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:35:45 64KB python numpy 数据分析
1
数据分析 Numpy+Scipy+Matplotlib+Pandas 基础数值算法 科学计算 数据可视化 序列高级函数 一、numpy是什么? 1.Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。 2.Numpy是其它数据分析及机器学习库的底层库。 3.Numpy完全标准C语言实现,运行效率充分优化。 4.Numpy开源免费。 二、Numpy的历史 1.1995年,Numeric,Python语言数值计算扩充。 2.2001年,Scipy->Numarray,多维数组运算。 3.2005年,Numeric+Numarray->Numpy。 4.2006年,Numpy脱离Scipy成为独立的项目。 三、Numpy的核心:多维数组 1.代码简洁:减少Python代码中的循环。 2.底层实现:厚内核(C)+薄接口(Python),保证性能。 代码:vector.py 四、Numpy基础 1.数组对象 1)用np.ndarray类的对象表示n维数组 实际数据:数组中元素 元数据:描述数组中的元素 将实际数据与元数据分开存放,一方面提高了内存空间
2024-01-18 14:32:57 12KB python numpy 数据分析
1
内容概要:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 适合人群:具备一定编程基础,工作1-3年的研发人员 能学到什么:Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 阅读建议:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例。
2024-01-18 14:27:38 72B Python 数据挖掘 数据分析 Hadoop
1
主要介绍了Python数据分析pandas模块用法,结合实例形式分析了pandas模块对象创建、数值运算等相关操作技巧与注意事项,需要的朋友可以参考下
2024-01-18 14:27:17 68KB Python 数据分析 pandas模块
1
主要介绍了Python数据分析模块pandas用法,结合实例形式详细分析了Python数据分析模块pandas的功能、常见用法及相关操作注意事项,需要的朋友可以参考下
2024-01-18 14:26:25 171KB Python 数据分析模块 pandas
1
2021年“泰迪杯”数据分析技能赛A题+“非洲通讯产品销售数据”数据集 进入本世纪以来,我国通讯产品得到了飞速发展,其技术先进,价格便宜, 深受世界各国和地区尤其是非洲国家的欢迎。某通讯公司在非洲的多个国家深耕 多年,产品与服务遍布整个非洲大陆。为了更好地了解公司的销售情况,采用产 品的销售额和利润数据,对其盈利能力进行分析和预测,给决策人员提供分析报 告,以便为非洲各国提供更好的产品销售策略和服务。
2024-01-18 14:25:13 569KB 数据分析 数据集 数据可视化
1
博客中所需的数据分析资料。主要用于用户画像分析、资金储备、逾期还款率、借款利率、用户还款习惯、催收回款率、用户累积收益曲线
2024-01-18 14:20:02 55.76MB 数据分析
1
应用数据挖掘技术构建了一套掘进机工况监测数据分析系统。该系统通过掘进机工况监测数据采集系统采集掘进机机械系统、液压系统、电气系统、传动系统的工况参数,并将这些参数通过互联网发送到掘进机工况监测数据分析平台,在该平台上应用数据挖掘技术分析、挖掘掘进机工况参数,实现掘进机的远程维护和快速故障定位及故障处理,并对掘进机工况运行数据分析经验库进行学习更新,为掘进机故障处理提供知识经验支持。
2024-01-16 19:50:07 312KB 行业研究
1