matlab代码粒子群算法合作PSO-LA 基于学习自动机(CPSOLA)算法和Matlab的协同粒子群优化算法的Matlab代码。 抽象的 本文提出了一种基于群体协同行为和自动机学习能力的粒子群优化(PSO)技术。 这种方法称为基于学习自动机的合作粒子群优化(CPSOLA)。 CPSOLA算法使用三层协作:群内,群内和群间。 CPSOLA中有两个活跃的种群。 在主要种群中,粒子被放置在所有群体中,每个群体都包含搜索空间的多个维度。 此外,CPSOLA中还有一个二级人口,使用的是常规PSO的更新格式。 在合作的上层,嵌入式学习自动机(LA)负责决定是否在人群之间进行合作。 在五个基准功能上组织了实验,结果显示了CPSOLA的显着性能和鲁棒性,群体的协作行为以及成功的种群自适应控制。 参考 [1] Mohammad Hasanzadeh,Mohammad Reza Meybodi和Mohammad Mehdi Ebadzadeh,“”,在2012年第20届伊朗电气工程大会(ICEE)上,2012年,第656至661页。 [2] Mohammad Hasanzadeh,Mohammad R
2021-11-11 14:36:57 11KB 系统开源
1
启发式策略 一字棋 解:使用启发方法搜索 空间仅大约4.5×9,近40种状态 一字棋9!=3.6×105种状态 国际象棋有10120种状态 西洋跳棋游戏1040种状态 围棋10761种状态 。。。。。。 这样的状态空间难以或者说不可能遍历搜索,则必须采用启发式策略,以减少搜索的复杂程度
2021-11-09 21:31:56 2.77MB acm 搜索
1
人工智能启发式搜索算法,访问各个城市,内含实验报告以及实验代码(java)
2021-11-09 18:15:15 1.2MB 人工智能 启发式搜索算法实验
1
路径GAN 基于采样路径规划启发式生成对抗网络的Pytorch实现 表中的内容 结构 PathGAN的总体结构由两部分组成: RRT *搜索算法和 产生性的对抗性网络,用于产生有希望的区域 搜索算法 RRT*算法: 比较RRT*和Heuristic RRT* : GAN架构 GAN整体架构: GAN架构的详细信息: 数据集 数据集 训练 结果 执照 该项目在麻省理工学院获得许可。 链接 基于生成式对抗网络的启发式算法,用于基于采样的路径规划(arXiv文章) GAN路径查找器(arXiv文章)
1
使用java语言写的八数码问题,仅供参考。其中用到了启发式搜索算法
2021-11-08 02:48:04 8KB java 八数码 启发式搜索
1
MatPlanWDM 是一种用于波长路由 WDM 网络的网络规划工具。 规划问题的输入参数是网络物理拓扑、流量矩阵和技术约束,如发射器、接收器、光转换器和可用波长的数量。 它包括一组用于解决虚拟拓扑设计的启发式算法,以及基于它的交通流的路由和疏导。 启发式算法集可以扩展。 这可以通过工具中包含的一组经典网络优化算法库来简化。 此外,还包括实现线性混合整数规划 (MILP) 问题以获得最优解。 假设分析 GUI 允许设计详尽的测试。 多小时分析 GUI 支持对动态规划算法的评估,这些算法对每天每小时变化的交通矩阵做出React。 这对于跨多个时区的洲际拓扑的规划很有用,其中节点活动受其本地时间的影响。 动态规划 GUI 允许测试对流量到达和离开做出React的通用动态算法。 作者:Pablo Pavón Mariño(主管)、Ramón Aparicio Pardo、Belén Garc
2021-11-01 10:27:36 3.16MB matlab
1
这段代码展示了一种新算法,它对解决基于分形中出现的扩散特性的优化问题提供了新的见解。 该算法能够在最少的迭代次数内实现与全局最优解相比具有最小(或最多小)误差的解,从而在准确性、收敛时间和操作简单性方面提供改进。 ------------------------------------------ 文章链接: http://www.sciencedirect.com/science/article/pii/S0950705114002822
2021-10-31 11:43:42 5KB matlab
1
Aquila Optimizer (AO) 是一种新颖的基于种群的优化方法,其灵感来自于 Aquila 在捕捉猎物过程中的自然界行为。 主要参考文献: Abualigah, L., Yousri, D., Elaziz, MA, Ewees, AA, A. Al-qaness, MA, Gandomi, 啊,Aquila 优化器:一种新颖的元启发式优化算法,计算机与工业工程(2021), doi: https://doi.org/10.1016/j.cie.2021.107250 Researchgate 提供的代码: https : //www.researchgate.net/publication/350411564_Matlab_Code_of_Aquila_Optimizer_A_novel_meta-heuristic_optimization_algorithm
2021-10-30 13:46:37 4.85MB matlab
1
ECM3412自然启发式计算-进化算法 这是使用二进制锦标赛,最弱替换,M基因突变和单点交叉来解决装箱问题的稳态进化算法的实现。 入门 首先,建议您创建一个虚拟Python环境。 输入命令python -m venv .venv完成此操作。 然后,我们想通过命令.venv\scripts\activate.bat 。 最后,我们要获取该项目的需求。 pip install -r requirements.txt 。 main.py文件将执行许多试验,并打印一批结果。 使用jupyter notebook notebook.ipynb打开的jupyter notebook notebook.ipynb将把结果输出为LaTeX表。 通过使用from evolution import evolve_bin_packing_solution可以使用evolution模块。
2021-10-29 19:32:25 95KB Python
1
matlab写脑式算法代码作为迷宫求解器实现的 A* 搜索算法 该代码使用 A* 算法来解决输入迷宫,搜索其解决方案路径并直观地表示它。 该搜索算法对目标执行完整的、可接受的和最佳搜索。 这段代码中的 A* 是用 MATLAB 编写的,是作为函数实现的。 注意:使用的启发式函数只是到目标的欧几里德距离,知道它的位置。 函数输入:Square Matrix,代表迷宫,'1' 墙,'0' 空闲位置,'3' 起点,'9' 目标点。 示例:迷宫 = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1; 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1; 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1; 3 0 1 0 1 1 1 1 1 0 1 0 1 0 1; 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1; 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1; 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1; 1 0 1 0 1 0 1 0 1 1 1 1 1 0
2021-10-29 18:17:51 90KB 系统开源
1