苹果好坏腐烂病害缺陷检测数据集是针对目标检测任务开发的,包含了6970张图片和对应的标注信息,以Pascal VOC格式和YOLO格式提供。数据集通过精细的标注,对苹果的四个类别:“病害苹果”、“好苹果”、“腐烂苹果”、“一般苹果”进行了识别和分类。 在Pascal VOC格式中,每个图片都会有一个对应的xml标注文件,文件中详细描述了图片中苹果的位置信息和类别信息。这些信息通过矩形框(bounding box)的方式展现,每个矩形框内包含了一个苹果对象的类别标签和它在图片中的具体位置坐标。每个类别下都标有具体的框数,分别对应于该类别下的苹果数量。例如,病害苹果共1674个,好苹果为914个,腐烂苹果为14556个,一般苹果为792个。 YOLO格式则使用文本文件来标注,每个文本文件与一个图片文件相对应,其中包含了以空格分隔的类别和位置信息。YOLO格式的标注更方便于在YOLO(You Only Look Once)目标检测框架中使用,YOLO是一种流行的实时目标检测系统,能够快速准确地识别和定位图片中的物体。 在数据集的使用中,标注工具labelImg被用来绘制矩形框并标注类别。该数据集遵循严格的标注规则,确保标注的一致性和准确性。使用此数据集的研究人员和开发者可以通过这些精细标注的数据来训练或提升目标检测模型,尤其是对于农业视觉分析、质量控制、自动分拣等方面的应用。 虽然数据集提供了大量准确标注的图片,但重要说明指出,数据集本身不保证由此训练出的模型或权重文件的精度,用户需要自行负责模型的训练和验证工作。此外,虽然数据集的具体使用和下载地址已经给出,但数据集不对最终的模型精度进行任何保证,用户在使用前应当充分了解这一点。 数据集还提供了一部分图片预览和标注例子,以供用户评估数据集的质量和适用性。通过图片预览和例子,用户可以直观感受到标注的细致程度和数据集的实用性。对于需要进行苹果质量检测,特别是对病害、好坏以及腐烂程度分类的研究人员和工程师来说,这个数据集无疑是一个宝贵资源。
2025-12-18 14:54:07 2.82MB 数据集
1
嗨,大家好,这个资料库包含脚本的源代码,用于检测视频/摄像机框架中的汽车,然后在它们周围绘制矩形框。 用于检测汽车和边界框坐标的ML算法是一种预训练的级联模型。 全文在哪里? 该项目的完整文章最初发布在上,文章标题 入门 首先,我们必须克隆项目存储库或下载项目zip,然后将其解压缩。 git clone https://github.com/Kalebu/Real-time-Vehicle-Dection-Python cd Real-time-Vehicle-Dection-Python Real-time-Vehicle-Dection-Python - > 依存关系 现在,一旦我们在本地目录中有了项目存储库,现在就可以安装运行脚本所需的依赖项 pip install opencv-python 范例影片 我们在该项目中使用的示例视频是 ,它将在您下载或克隆存储库时出现,以加载具
2025-12-17 14:53:27 2.76MB python data-science machine-learning article
1
道路积水检测数据集包含2699张图片,这些图片适用于目标检测任务,特别是针对道路积水的情况。该数据集采用Pascal VOC格式和YOLO格式,前者通常用于机器学习和计算机视觉研究中的目标检测任务,包括图片文件、XML格式的标注文件以及YOLO格式的文本文件,不含图像分割路径的txt文件。在本数据集中,所有的标注都是以矩形框的形式来定义道路积水的位置。 该数据集中的标注信息非常详细,包含了2699张jpg格式的图片,每张图片都对应有一个XML文件进行标注,以及一个YOLO格式的文本文件。这些文件共同构成了一个强大的训练和验证工具集,能够帮助研究人员和开发者训练出能够识别和定位道路积水的算法模型。 数据集包含了单一的标注类别,即“water”,代表水或积水。在所有标注的图片中,共有3777个矩形框用于标注积水区域,每个矩形框对应了道路积水的位置和面积。这些标注数据对于目标检测算法来说极为重要,因为它们提供了真实世界情况下的视觉信息,是算法学习和理解积水模式的基础。 在标注过程中,使用了流行的标注工具labelImg,它是一款易于使用的图像标注软件,支持矩形框标注,并生成相应的标注文件。而数据集中的标注规则是将道路积水区域以矩形框的形式进行标注。 重要的是,制作者声明数据集的准确性保证,但不对其训练出的模型或权重文件的精度进行保证。这意味着尽管数据集经过了精确的标注和整理,但是最终模型的性能还会受到其他因素的影响,包括模型架构、训练过程以及算法选择等。 该数据集适用于机器学习和深度学习研究,特别是针对图像识别和目标检测的研究领域。由于该数据集标注的特定性,它的应用范围可以扩展到道路安全监控、自动驾驶车辆的导航系统以及智慧城市的基础设施维护等多个领域,能够帮助开发者和研究人员识别和缓解因道路积水可能引起的安全问题。
2025-12-17 10:11:43 4.35MB 数据集
1
本文介绍了一个包含8457张图片的车辆分类识别数据集,支持YOLO和VOC格式标注,涵盖7种车辆类型(如大巴车、轿车、行人等)。数据集适用于无人机航拍、监控视频等场景,可用于智慧交通管理,如车流量管控、交通拥堵预警等。文章详细讲解了数据集的标注格式、文件结构及适用范围,并提供了基于YOLOv8的训练教程,包括数据导入、分割、格式化处理及模型训练步骤。此外,还介绍了如何使用QT开发目标检测可视化界面,展示了图片和视频检测效果,并提供了前端代码示例。数据集可通过文章底部或主页私信获取。 文章详细介绍了车辆分类识别数据集,该数据集包含8457张图片,为机器学习和深度学习提供了丰富的学习样本。数据集中的图片支持YOLO和VOC格式标注,具体包括大巴车、轿车、行人等七种车辆类型,使得数据集具备了较高的实用价值。 这些数据不仅可以用于传统的目标检测和识别任务,还可以应用于无人机航拍、监控视频等特殊场景,尤其在智慧交通管理系统中,可以实现对车流量的管控、交通拥堵的预警等功能,从而大幅提高交通管理的效率和准确性。 文章还详细解读了数据集的标注格式、文件结构以及其适用范围,使得使用者能够更好地理解和应用该数据集。同时,作者提供了一份基于YOLOv8的训练教程,这个教程涵盖了从数据导入、分割、格式化处理到模型训练的完整步骤。这一教程无疑对那些想要学习或应用YOLO算法的开发者和技术人员具有极大的指导价值。 此外,文章还介绍了如何使用QT进行目标检测可视化界面的开发,这不仅加深了读者对目标检测应用场景的理解,还提供了一个实际操作的案例。通过文章内容,读者可以看到图片和视频检测的实际效果,并能直接获取到前端代码示例。 数据集的获取途径也被详细提供,读者可以通过文章底部或主页私信来获得这个宝贵的学习和研究资源。该数据集和相关教程对于推动车辆识别技术的发展和应用具有重要意义。
2025-12-16 10:46:15 7KB 目标检测 YOLO 数据集
1
针对刮板输送机运行过程中张力难以有效监测的问题,设计了一种基于有限元分析的刮板输送机张力检测系统。通过分析刮板与刮板链之间的受力关系,寻找刮板与刮板链之间的张力敏感点,在若干刮板输送机刮板上嵌入应变传感器,测量刮板和链条之间弱耦合点的张力,进而获取刮板链张力分布,实现刮板输送机链条张力的动态监测。
2025-12-16 09:42:48 231KB 行业研究
1
关于如何在Android上使用ncnn运行YOLOv自定义对象检测的完整教程_A complete tutorial on how to run YOLOv8 custom object detection on Android with ncnn.zip 在Android设备上部署和运行YOLOv8自定义对象检测模型是一个多步骤的过程,涉及到对Android开发环境的熟悉,以及对YOLO和ncnn框架的理解。YOLO(You Only Look Once)是一系列流行的目标检测算法,以其快速和准确性著称。YOLOv8作为该系列的最新版本,继承了这些优点,并在性能上有所提升。ncnn是一个专注于移动端优化的高性能神经网络前向推理框架,它被广泛应用于移动设备上的深度学习应用。 为了在Android上使用ncnn框架运行YOLOv8自定义对象检测,首先需要准备一个编译好的YOLOv8模型,这通常涉及到使用ncnn的模型转换工具将YOLOv8模型转换为ncnn支持的格式。接下来需要在Android Studio中创建一个新的Android项目,并将转换好的模型文件集成到项目中。集成过程中需要对ncnn库进行配置,包括导入必要的库文件和源代码文件,确保ncnn能在Android应用中正确运行。 在配置好ncnn库之后,开发者需要编写相应的代码来加载模型并实现对象检测功能。这通常包括设置输入输出的格式,处理图像数据,调用ncnn进行推理,并将推理结果以易于理解的形式展现出来。开发者还需要考虑Android应用的性能优化,比如采用多线程处理以充分利用多核心CPU资源,以及对图像预处理和结果解析进行优化。 此外,为了让YOLOv8在Android上运行时更加高效,开发者可能需要对YOLOv8模型进行压缩和量化处理,以减少模型大小和提高推理速度。这个过程可能涉及到特定的网络结构调整和训练策略,以便在保持模型准确性的同时获得更好的运行效率。 完成代码编写和测试之后,就可以在Android设备上部署应用,并进行实际的对象检测测试。在这个过程中,开发者需要考虑到不同设备的兼容性问题,可能需要对特定的硬件配置进行调整和优化,以确保检测模型在各种Android设备上的通用性和稳定性。 所有这些步骤都需要开发者具备扎实的编程技能,熟悉Android开发流程,以及对YOLO和ncnn框架有较深的理解。通过上述步骤,可以在Android设备上实现高性能的自定义对象检测功能,为移动应用提供强大的视觉分析能力。
2025-12-15 22:26:55 411.34MB
1
汇川MD500全C最新版源码解析:核心开放、可移植与二次开发,新增制动电阻检测电路,疑似软件平台升级为ARM,增加专机功能宏和以太网通讯探索。,汇川md500md500e全C最新版源程序,核心全开放,可移植可二次开发,驱动板和380差不多 去年之前的500比380改动不大,增加了制动电阻检测电路去掉过压电路。 其他的基本没变。 最新的MD500我怀疑软件平台改成ARM了,增加了很多专机功能宏和以太网通讯,最新的500机器我也没见过。 ,MD500; MD500E; 核心全开放; 可移植; 二次开发; 驱动板; 制动电阻检测; 专机功能宏; 以太网通讯。,"汇川MD500系列全C版源程序解析:核心开放,可移植二次开发,新增制动电阻检测与以太网通讯"
2025-12-15 11:02:36 1.09MB 开发语言
1
2 文档/工具索引 2.1 文档索引 随 RK3288 SDK 发布的文档旨在帮助开发者快速上手开发及调试,文档中涉及的内容并不能 涵盖所有的开发知识和问题。文档列表也正在不断更新,如有文档上的疑问及需求,请联系我们的 FAE 窗口。 RK3288 SDK 中在 RKDocs 目录下附带了 Develop reference documents(开发指导文 档)、Platform support lists(支持列表)、RKTools manuals(工具使用文档)。 RKDocs/ ├── Develop reference documents │ ├── Camera_for_RockChipSDK 参考说明_v4.1.pdf │ ├── RK USB Compliance Test Note V1.2.pdf │ ├── Rockchip_android7.1_wifi_配置明 V1.4.pdf │ ├── Rockchip Audio 开发指南 V1.0-20160606.pdf │ ├── Rockchip CPU-Freq 开发指南 V1.0.1-20170213.pdf │ ├── Rockchip DEVFreq 开发指南 V1.0-20160701.pdf │ ├── Rockchip I2C 开发指南 V1.0-20160629.pdf │ ├── Rockchip IO-Domain 开发指南 V1.0-20160630.pdf │ ├── RockChip_LCD 开发文档 v1.6.pdf │ ├── Rockchip Pin-Ctrl 开发指南 V1.0-20160725.pdf │ ├── Rockchip Recovery OTA 用户操作指南 V1.00.pdf │ ├── Rockchip RK818 电量计开发指南 V1.0-20160725.pdf │ ├── Rockchip SDMMC SDIO eMMC 开发指南 V1.0-20160630.pdf │ ├── Rockchip Secure Boot Application Note_v1.7_20170519.pdf │ ├── Rockchip SPI 开发指南 V1.0-20160629.pdf │ ├── Rockchip Thermal 开发指南 V1.0.1-20170428.pdf │ ├── Rockchip UART 开发指南 V1.0-20160629.pdf │ ├── Rockchip U-Boot 开发指南 V3.7-20160708.pdf | |── Rockchip-USB-Performance-Analysis-Guide.pdf │ ├── Rockchip USB 开发指南 V1.0-20160704.pdf │ ├── Rockchip Vendor Storage Application Note.pdf │ ├── Rockchip DRM Panel Porting Guide.pdf │ ├── Rockchip 以太网开发指南 V2.3.1-20160708.pdf │ ├── Rockchip 休眠唤醒开发指南 V0.1-20160729.pdf │ ├── Rockchip 时钟子模块开发指南 V1.0-20160630.pdf │ ├── Rockchip 背光控制开发指南 V0.1-20160729.pdf │ └── Rockchip 量产烧录指南 V1.0-20160718.pdf ├── Platform support lists ├── RK3288 EVB2.0(RK_EVB_RK3288_LPDDR3P232SD6_V10_20171012SQJ) 用户指南_20171228.pdf │ ├── RK3288 Multimedia Codec Benchmark v1.8.pdf │ ├── RK3288 SDK 开发板用户指南 V10.7z │ ├── RK DDR Support List Ver2.24.pdf
2025-12-15 02:44:59 1.38MB rk3288android
1
python安装恶意软件检测与分类_机器学习_深度学习_自然语言处理_计算机视觉_恶意软件特征提取_恶意软件分类_恶意软件识别_恶意软件分析_恶意软件检测_恶意软件防御_恶意软件对抗_恶意软件研究.zip 恶意软件检测与分类是信息安全领域的一项核心任务,随着网络技术的发展和恶意软件(又称恶意代码或恶意程序)的日益复杂,这一领域的研究显得尤为重要。恶意软件检测与分类的目的是为了能够及时发现恶意软件的存在,并将其按照特定的标准进行分类,以便采取相应的防御措施。 机器学习是实现恶意软件检测与分类的关键技术之一。通过机器学习算法,可以从大量已知的恶意软件样本中提取出特征,并训练出能够识别未知样本的模型。在机器学习的框架下,可以通过监督学习、无监督学习或半监督学习等方式对恶意软件进行分类。深度学习作为机器学习的分支,特别适用于处理大量的非结构化数据,如计算机视觉领域中提取图像特征,自然语言处理领域中处理日志文件等。 自然语言处理技术能够对恶意软件代码中的字符串、函数名等进行语义分析,帮助识别出恶意软件的特征。计算机视觉技术则可以在一些特殊情况下,例如通过分析恶意软件界面的截图来辅助分类。恶意软件特征提取是将恶意软件样本中的关键信息抽象出来,这些特征可能包括API调用序列、代码结构、行为模式等。特征提取的质量直接影响到恶意软件分类和检测的效果。 恶意软件分类是一个将恶意软件按照其功能、传播方式、攻击目标等特征进行划分的过程。分类的准确性对于后续的防御措施至关重要。恶意软件识别则是对未知文件或行为进行判断,确定其是否为恶意软件的过程。识别工作通常依赖于前面提到的特征提取和分类模型。 恶意软件分析是检测与分类的基础,包括静态分析和动态分析两种主要方法。静态分析不执行代码,而是直接检查程序的二进制文件或代码,尝试从中找到恶意特征。动态分析则是在运行环境中观察程序的行为,以此推断其是否具有恶意。 恶意软件检测是识别恶意软件并采取相应措施的实时过程。它涉及到对系统或网络中运行的软件进行监控,一旦发现异常行为或特征,立即进行标记和隔离。恶意软件防御是在检测的基础上,采取措施防止恶意软件造成的损害。这包括更新安全软件、打补丁、限制软件执行权限等。 恶意软件对抗则是在恶意软件检测与分类领域不断升级的攻防博弈中,安全研究者们所进行的工作。恶意软件编写者不断改变其代码以规避检测,而安全专家则需要不断更新检测策略和分类算法以应对新的威胁。 恶意软件研究是一个持续的过程,涉及多个学科领域和多种技术手段。随着人工智能技术的发展,特别是机器学习和深度学习的应用,恶意软件检测与分类技术也在不断进步。 恶意软件检测与分类是一个复杂且持续发展的领域,它需要多种技术手段的综合应用,包括机器学习、深度学习、自然语言处理和计算机视觉等。通过不断的研究和实践,可以提高检测的准确性,加强对恶意软件的防御能力,从而保护用户的网络安全。
2025-12-13 21:35:22 5.93MB python
1
在数据分析和统计建模领域,贝叶斯突变点检测是一种重要的技术,它用于识别时间序列数据中的结构变化或突变点。这种技术基于贝叶斯统计理论,可以帮助研究人员理解数据集随时间的变化模式,特别是在生物信息学、金融、工程等领域有着广泛应用。本资料包包含与贝叶斯突变点检测及时间序列分解相关的Matlab实现,以及可能的Python和R语言版本。 1. **贝叶斯突变点检测**: 贝叶斯方法的核心在于使用先验知识更新对后验概率的估计。在突变点检测中,这一方法用于估计数据序列中发生突变的潜在位置。通过构建适当的贝叶斯模型,我们可以计算在每个时间点上存在突变的后验概率。这通常涉及到计算不同假设(有无突变)下的似然函数,并结合先验概率进行贝叶斯更新。Matlab中,可以使用如`BayesianChangePoint`等工具箱来实现这个过程。 2. **时间序列分解**: 时间序列分解通常包括趋势分析、季节性分析和随机性分析,目的是将复杂的时间序列拆分为更简单的成分,便于理解和预测。在Matlab中,可以使用`decompose`函数或者自定义算法进行这些操作。例如,平滑法(如移动平均法)、季节性分解Loess(STL)和状态空间模型等都是常用的方法。 3. **Matlab实现**: 提供的`Matlab`目录可能包含了用于执行贝叶斯突变点检测和时间序列分解的脚本和函数。用户可以通过加载数据,调用相应的函数,可视化结果,从而进行分析。注意,Matlab代码通常需要对Matlab环境有一定的熟悉度,包括矩阵运算、数据处理和图形绘制等方面的知识。 4. **Python和R实现**: 除了Matlab,文件列表中还提到了Python和R的实现。这两个开源语言也有各自的库支持贝叶斯突变点检测,如Python的`ruptures`库和R的`changepoint`包。Python实现可能更注重效率和可扩展性,而R实现则可能提供更丰富的统计分析功能。使用者可以根据自己的需求和熟悉程度选择合适的技术栈。 5. **README.md**: 这个文件通常会提供项目简介、安装指南、使用示例和可能的注意事项,是理解整个工具包的重要入口。通过阅读此文件,用户可以快速掌握如何运行和利用提供的代码资源。 这个资料包为研究者和数据分析人员提供了一套全面的工具,用于在Matlab、Python和R环境中进行贝叶斯突变点检测和时间序列分解。通过学习和应用这些工具,不仅可以深入理解数据集的变化特性,还能进一步进行预测和决策支持。
2025-12-13 17:16:14 6.09MB matlab
1