我们通过标准模型有效场理论(SMEFT)中的六维算子对Z衰减特性进行单环校正,这些校正也有助于异常的3号玻色子玻色子耦合,并研究了两个过程对异常耦合的相对敏感性。 贡献的大小约为百分之几,与标准模型电弱校正的大小相同。 这是在SMEFT中将电弱量计算为一环的程序的一部分:将来的全局拟合需要这些计算,以将一维六次Wilson系数的系数始终限制为一环。
2024-07-18 18:31:14 458KB Open Access
1
深入分析了基于动态车辆模型的百度Apollo平台上的线性二次调节器(LQR)和模型预测控制(MPC)横向控制算法。通过对这两种算法的比较研究,揭示了它们在处理车辆横向控制问题时的性能差异和适用场景。文章提供了详细的算法原理、仿真结果以及在实际车辆上的测试数据,为自动驾驶车辆的横向控制提供了有价值的参考。 适用人群: 本研究适合自动驾驶技术、控制理论、车辆工程等领域的专业人士,以及对智能车辆控制和自动驾驶系统设计感兴趣的学生和研究人员。 使用场景: 研究成果可以应用于自动驾驶车辆的横向控制策略设计,提高车辆的行驶稳定性和安全性,同时为自动驾驶系统的进一步优化提供理论依据。 目标: 旨在评估和优化自动驾驶车辆的横向控制算法,推动自动驾驶技术的发展,增强智能交通系统的安全性和可靠性。 关键词标签: 动态车辆模型 百度Apollo LQR MPC横向控制
2024-07-18 14:50:33 901KB 毕业设计 MPC
1
交通大模型与时序大模型是现代信息技术在交通物流领域中的重要应用,特别是在人工智能技术的推动下,这些模型已经成为解决复杂交通问题的有效工具。本开源代码集合提供了相关算法和实现细节,帮助开发者理解和构建自己的交通预测与优化系统。 交通大模型通常涵盖了城市交通系统的各个方面,包括公共交通、私人车辆、行人流动等,通过集成大量的数据源(如GPS轨迹、交通监控、公交刷卡数据等)来构建一个全面的交通网络模型。这种模型能够模拟交通流的动态变化,分析交通拥堵的原因,预测未来交通状态,并为交通规划和管理提供决策支持。 时序大模型则专注于时间序列数据分析,尤其适用于处理具有明显时间依赖性的交通数据。它利用深度学习技术,如LSTM(长短期记忆网络)或Transformer架构,对历史交通流量进行建模,然后对未来时刻的交通状态进行预测。这样的模型对于实时交通流量预测、出行需求估计、交通信号控制优化等方面有着显著优势。 在压缩包文件中,"交通大模型"可能包含以下内容: 1. 数据预处理模块:用于清洗和格式化原始交通数据,如处理缺失值、异常值,将不同数据源的数据统一。 2. 网络结构定义:可能包括基于深度学习的模型代码,如LSTM或Transformer的实现,用于学习交通流的时空模式。 3. 训练与评估脚本:用于训练模型、调整参数、评估模型性能,可能包含交叉验证和性能指标计算。 4. 应用示例:展示如何将训练好的模型应用于实际交通问题,如交通流量预测、拥堵识别等。 5. 结果可视化:可能有代码帮助用户理解模型预测结果,如绘制交通流量图或热力图。 通过研究和实践这些开源代码,开发者可以深入理解交通模型的工作原理,学习如何处理大规模交通数据,以及如何构建和优化时序预测模型。这对于交通领域的研究者、数据科学家以及希望改善城市交通状况的工程师来说,都是极其宝贵的资源。同时,这也是推动人工智能在交通物流领域落地应用的重要一步,有助于提升城市交通效率,减少拥堵,提高市民出行体验。
2024-07-18 14:46:40 77.97MB 交通物流 人工智能
1
神经网络的labview实现,更加方便,修改也更加容易。
2024-07-16 14:23:18 483KB labview 神经网络
1
传统的矿体建模是基于结构条件驱动的,在边界属性变化时,所建立的模型难以随之动态变化,为解决这一问题,针对矿体的动态特点,提出了基于属性驱动的矿体动态建模方法。首先利用三维块体属性模型,按任意给定的边界属性条件,在块体模型中对所需单元块体进行动态提取,然后基于特征面求取和曲面光滑算法将矿体属性模型转换成几何结构模型,最后建立给定工业指标条件下的矿体三维几何模型。应用实例表明,该方法实现了在不同边界属性条件下动态提取、生成矿体的属性结构和几何结构,可精确构建光滑矿体模型,提高了矿体动态建模效率。
1
通过介绍矿床模型的表现形式、建立原则,引申出建立块体模型所需要的零件和步骤,并在矿量计算、剥离量计算、排土容量计算、采矿面貌推算、长远规划中得到交叉综合运用,对露天采矿设计手段的提高有重要指导意义。
2024-07-15 21:30:54 469KB 行业研究
1
《基于ANSYS平台的有限元分析手册:结构的建模和分析》是深入理解并掌握ANSYS软件在结构工程领域应用的重要参考资料。该手册详细介绍了如何利用ANSYS进行复杂的结构建模、求解以及结果分析,是工程师进行工程计算和设计优化的得力工具。 在有限元分析(Finite Element Analysis, FEA)中,ANSYS是一款全球广泛使用的软件,它能处理各种类型的工程问题,包括静态、动态、热力学、流体动力学等。结构的建模与分析是其核心功能之一,涉及到的内容广泛且深入。 1. **结构建模**:在ANSYS中,建模通常包括几何模型的创建、网格划分和材料属性定义三个步骤。几何模型可以是简单的实体或复杂的曲面,通过CAD软件导入或者直接在ANSYS内构建。网格划分将几何模型离散化为有限个单元,以适应数值计算。材料属性定义涉及弹性模量、泊松比、密度等参数,确保模型真实反映物理特性。 2. **边界条件设定**:在分析前,需设置适当的边界条件,如固定约束、荷载施加、初始条件等。这些条件模拟实际工况,确保分析结果准确无误。 3. **求解过程**:在模型准备完毕后,ANSYS会运用数值方法求解方程组,找出结构在给定条件下的响应。这包括位移、应力、应变、力等关键参数。 4. **结果后处理**:分析完成后,结果可视化是理解模型性能的关键。ANSYS提供了丰富的后处理工具,可显示云图、曲线、截面视图等,帮助工程师直观地理解分析结果。 5. **优化设计**:除了基本的分析,ANSYS还支持设计优化,通过对设计变量、目标函数和约束条件的调整,寻找最优设计方案,以满足工程性能和成本目标。 6. **非线性分析**:对于材料非线性(如塑性变形)、几何非线性(大变形)和接触非线性等问题,ANSYS也能提供解决方案。这些高级功能使得ANSYS在处理复杂工程问题时具有强大的能力。 7. **动态响应分析**:在涉及振动、冲击或瞬态问题时,ANSYS能够计算结构的频率、振型和动态响应,这对于航空航天、汽车等领域尤其重要。 8. **多物理场耦合分析**:除了结构力学,ANSYS还能进行热-力耦合、流-固耦合等多物理场分析,实现跨学科问题的综合解决。 通过深入学习《基于ANSYS平台的有限元分析手册:结构的建模和分析》,工程师可以掌握使用ANSYS进行高效、准确的结构分析技能,提升工程设计水平,解决实际工程中的各类挑战。无论是在产品开发、性能验证还是故障诊断等方面,ANSYS都能提供强大的技术支持。
2024-07-15 11:04:39 144KB ANSYS 有限元模型
1
块体金属玻璃热压印中结构深宽比和晶化程度控制模型,刘婧蓓,林杰,本文利用La62Al14Cu12Ni12块体金属玻璃的热力学特征参数、拟合的过冷液相区粘度以及拟合的形核速率、生长速率、晶化体积分数与时间的�
2024-07-15 11:02:54 1.32MB 首发论文
1
为了研究块体形状对岩石黏结颗粒模型(BPM)力学特性的影响,分别选取随机多边形块体和随机三角形块体建立了Voronoi-BPM和Trigon-BPM模型,进行了岩石的单轴压缩、单轴拉伸和直剪数值试验。分别从破坏形式和宏-细观力学参数2个方面,分析了块体形状对岩石细观离散元模型力学特性的影响。
1
为校正Pareto-Beta跳扩散期权定价模型,首先,利用Pareto-Beta跳扩散模型和双指数跳扩散模型之间的联系使模型参数减少,然后,通过使欧式期权价格和相应的市场价格之间的均方误差最小将模型校正问题转化为局部最优化问题,通过在均方误差项增加一个惩罚函数保证了解的存在性和唯一性.为了提高模型校正的效率,利用快速傅立叶变换方法计算欧式期权价格.最后,将模型和校正算法应用于S&P 500指数期权进行实证分析,数值结果显示,所提校正算法具有较好的稳定性.
1