交通大模型与时序大模型开源代码

上传者: smartlab307 | 上传时间: 2024-07-18 14:46:40 | 文件大小: 77.97MB | 文件类型: ZIP
交通大模型与时序大模型是现代信息技术在交通物流领域中的重要应用,特别是在人工智能技术的推动下,这些模型已经成为解决复杂交通问题的有效工具。本开源代码集合提供了相关算法和实现细节,帮助开发者理解和构建自己的交通预测与优化系统。 交通大模型通常涵盖了城市交通系统的各个方面,包括公共交通、私人车辆、行人流动等,通过集成大量的数据源(如GPS轨迹、交通监控、公交刷卡数据等)来构建一个全面的交通网络模型。这种模型能够模拟交通流的动态变化,分析交通拥堵的原因,预测未来交通状态,并为交通规划和管理提供决策支持。 时序大模型则专注于时间序列数据分析,尤其适用于处理具有明显时间依赖性的交通数据。它利用深度学习技术,如LSTM(长短期记忆网络)或Transformer架构,对历史交通流量进行建模,然后对未来时刻的交通状态进行预测。这样的模型对于实时交通流量预测、出行需求估计、交通信号控制优化等方面有着显著优势。 在压缩包文件中,"交通大模型"可能包含以下内容: 1. 数据预处理模块:用于清洗和格式化原始交通数据,如处理缺失值、异常值,将不同数据源的数据统一。 2. 网络结构定义:可能包括基于深度学习的模型代码,如LSTM或Transformer的实现,用于学习交通流的时空模式。 3. 训练与评估脚本:用于训练模型、调整参数、评估模型性能,可能包含交叉验证和性能指标计算。 4. 应用示例:展示如何将训练好的模型应用于实际交通问题,如交通流量预测、拥堵识别等。 5. 结果可视化:可能有代码帮助用户理解模型预测结果,如绘制交通流量图或热力图。 通过研究和实践这些开源代码,开发者可以深入理解交通模型的工作原理,学习如何处理大规模交通数据,以及如何构建和优化时序预测模型。这对于交通领域的研究者、数据科学家以及希望改善城市交通状况的工程师来说,都是极其宝贵的资源。同时,这也是推动人工智能在交通物流领域落地应用的重要一步,有助于提升城市交通效率,减少拥堵,提高市民出行体验。

文件下载

资源详情

[{"title":"( 106 个子文件 77.97MB ) 交通大模型与时序大模型开源代码","children":[{"title":"china_city_list.csv <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"city_lntlat_gaode.csv <span style='color:#111;'> 13.75KB </span>","children":null,"spread":false},{"title":"2.gif <span style='color:#111;'> 226.57KB </span>","children":null,"spread":false},{"title":"5.gif <span style='color:#111;'> 138.96KB </span>","children":null,"spread":false},{"title":"4.gif <span style='color:#111;'> 135.30KB </span>","children":null,"spread":false},{"title":"1.gif <span style='color:#111;'> 126.98KB </span>","children":null,"spread":false},{"title":"3.gif <span style='color:#111;'> 123.33KB </span>","children":null,"spread":false},{"title":"6.gif <span style='color:#111;'> 94.51KB </span>","children":null,"spread":false},{"title":"gitattributes <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"gitattributes <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"gitattributes <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 17B </span>","children":null,"spread":false},{"title":"trans_wechat.jpg <span style='color:#111;'> 196.22KB </span>","children":null,"spread":false},{"title":"TransGPT_logo.jpg <span style='color:#111;'> 84.85KB </span>","children":null,"spread":false},{"title":"TransGPT-sft.json <span style='color:#111;'> 26.66MB </span>","children":null,"spread":false},{"title":"model_config.json <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"example_inputs.json <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"latest <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 16.66KB </span>","children":null,"spread":false},{"title":"README-English.md <span style='color:#111;'> 10.63KB </span>","children":null,"spread":false},{"title":"readme.md <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"README (1).md <span style='color:#111;'> 885B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 28B </span>","children":null,"spread":false},{"title":"Timer.pdf <span style='color:#111;'> 5.04MB </span>","children":null,"spread":false},{"title":"MT-GPT.pdf <span style='color:#111;'> 4.92MB </span>","children":null,"spread":false},{"title":"LLMob.pdf <span style='color:#111;'> 4.48MB </span>","children":null,"spread":false},{"title":"AccidentGPT.pdf <span style='color:#111;'> 3.46MB </span>","children":null,"spread":false},{"title":"TIME-LLM.pdf <span style='color:#111;'> 3.25MB </span>","children":null,"spread":false},{"title":"LLM-Assisted Light.pdf <span style='color:#111;'> 2.69MB </span>","children":null,"spread":false},{"title":"TF-LLM.pdf <span style='color:#111;'> 2.47MB </span>","children":null,"spread":false},{"title":"UniTS.pdf <span style='color:#111;'> 2.24MB </span>","children":null,"spread":false},{"title":"Lag-Llama.pdf <span style='color:#111;'> 1.81MB </span>","children":null,"spread":false},{"title":"TransGPT.pdf <span style='color:#111;'> 1.60MB </span>","children":null,"spread":false},{"title":"TPLLM.pdf <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"Large Models for Time Series and Spatio-Temporal Data A Survey and Outlook.pdf <span style='color:#111;'> 1.46MB </span>","children":null,"spread":false},{"title":"AuxMobLCast.pdf <span style='color:#111;'> 1.27MB </span>","children":null,"spread":false},{"title":"STG-LLM.pdf <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"TrafficGPT.pdf <span style='color:#111;'> 967.35KB </span>","children":null,"spread":false},{"title":"ST-LLM.pdf <span style='color:#111;'> 663.43KB </span>","children":null,"spread":false},{"title":"Large Language Models for Time Series A Survey.pdf <span style='color:#111;'> 572.16KB </span>","children":null,"spread":false},{"title":"jd4.png <span style='color:#111;'> 1.08MB </span>","children":null,"spread":false},{"title":"tk4.png <span style='color:#111;'> 782.66KB </span>","children":null,"spread":false},{"title":"jd3.png <span style='color:#111;'> 682.29KB </span>","children":null,"spread":false},{"title":"jd2.png <span style='color:#111;'> 608.11KB </span>","children":null,"spread":false},{"title":"example_jd3.png <span style='color:#111;'> 479.56KB </span>","children":null,"spread":false},{"title":"example_jd4.png <span style='color:#111;'> 448.88KB </span>","children":null,"spread":false},{"title":"example_jd2.png <span style='color:#111;'> 419.42KB </span>","children":null,"spread":false},{"title":"example_jd2.png <span style='color:#111;'> 419.42KB </span>","children":null,"spread":false},{"title":"example_tk2.png <span style='color:#111;'> 353.28KB </span>","children":null,"spread":false},{"title":"example_tk2.png <span style='color:#111;'> 353.28KB </span>","children":null,"spread":false},{"title":"example_tk3.png <span style='color:#111;'> 326.21KB </span>","children":null,"spread":false},{"title":"example_tk3.png <span style='color:#111;'> 326.21KB </span>","children":null,"spread":false},{"title":"example_jd1.png <span style='color:#111;'> 266.27KB </span>","children":null,"spread":false},{"title":"jd1.png <span style='color:#111;'> 257.68KB </span>","children":null,"spread":false},{"title":"example_tk4.png <span style='color:#111;'> 199.79KB </span>","children":null,"spread":false},{"title":"example_tk4.png <span style='color:#111;'> 199.79KB </span>","children":null,"spread":false},{"title":"img.png <span style='color:#111;'> 166.94KB </span>","children":null,"spread":false},{"title":"example_bz2.png <span style='color:#111;'> 162.48KB </span>","children":null,"spread":false},{"title":"example_bz4.png <span style='color:#111;'> 147.01KB </span>","children":null,"spread":false},{"title":"example_bz3.png <span style='color:#111;'> 143.05KB </span>","children":null,"spread":false},{"title":"example_bz3.png <span style='color:#111;'> 143.05KB </span>","children":null,"spread":false},{"title":"example_bz1.png <span style='color:#111;'> 121.83KB </span>","children":null,"spread":false},{"title":"tk2.png <span style='color:#111;'> 87.99KB </span>","children":null,"spread":false},{"title":"web.png <span style='color:#111;'> 85.56KB </span>","children":null,"spread":false},{"title":"tk3.png <span style='color:#111;'> 84.70KB </span>","children":null,"spread":false},{"title":"cli.png <span style='color:#111;'> 51.86KB </span>","children":null,"spread":false},{"title":"bz3.png <span style='color:#111;'> 29.53KB </span>","children":null,"spread":false},{"title":"bz4.png <span style='color:#111;'> 26.98KB </span>","children":null,"spread":false},{"title":"bz2.png <span style='color:#111;'> 25.01KB </span>","children":null,"spread":false},{"title":"bz1.png <span style='color:#111;'> 20.54KB </span>","children":null,"spread":false},{"title":"city.py <span style='color:#111;'> 60.48KB </span>","children":null,"spread":false},{"title":"finetune_visualglm.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false},{"title":"chat.py <span style='color:#111;'> 7.06KB </span>","children":null,"spread":false},{"title":"gaode_api.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"web_demo.py <span style='color:#111;'> 5.69KB </span>","children":null,"spread":false},{"title":"cli_demo.py <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"tianditu.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"whether_1-15.py <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false},{"title":"blip2.py <span style='color:#111;'> 3.66KB </span>","children":null,"spread":false},{"title":"visualglm.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"gaode_map.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"infer_util.py <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"example_sat.py <span style='color:#111;'> 916B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"chat.cpython-38.pyc <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"blip2.cpython-38.pyc <span style='color:#111;'> 4.57KB </span>","children":null,"spread":false},{"title":"visualglm.cpython-38.pyc <span style='color:#111;'> 2.24KB </span>","children":null,"spread":false},{"title":"infer_util.cpython-38.pyc <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"__init__.cpython-38.pyc <span style='color:#111;'> 253B </span>","children":null,"spread":false},{"title":"finetune_visualglm_transgpt.sh <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"finetune_visualglm_qlora.sh <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"finetune_visualglm.sh <span style='color:#111;'> 1.44KB </span>","children":null,"spread":false},{"title":"Single_mode_demo <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"TransGPT-pt.txt <span style='color:#111;'> 34.11MB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"environment.yml <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"TransGPT-main.zip <span style='color:#111;'> 7.82MB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明