WGAN-GP纯粹是为了满足WGAN中的李普西斯条件,WGAN自己的满足方式是gradient clipping,但是这样的话WGAN的大部分weight会是正负0.01,需要新的满足李普西斯条件的方法,这就是motivation;
2021-11-07 13:46:40 7KB WGAN-GP
1
生成对抗网络GAN使用PyTorch框架实现
2021-11-03 19:21:55 29.97MB 深度学习 pytorch GAN
1
可见光图像易受光照变化影响,而热红外图像对成像的光照条件具有鲁棒性,因此,热红外图像可以弥补可见光图像光照敏感性这一不足。然而,红外热像仪价格昂贵,采集热红外图像的成本远高于可见光图像。针对此问题,提出了一种基于生成对抗网络的热红外人脸图像生成方法,采用条件生成对抗网络结合L1损失从可见光图像中生成红外热像。在USTC-NIVE数据库上的实验结果验证了所提出的红外热像生成方法的有效性。同时,将生成的红外热像作为扩充样本,有助于提高红外表情识别的精度。
2021-11-02 21:03:08 193KB 生成对抗网络
1
针对不可抗力因素造成无人机航拍绝缘子图片模糊、绝缘子目标检测率较低的问题,提出了一种基于Wasserstein距离优化的生成式对抗网络(WGAN)图片去模糊的绝缘子目标检测方法。首先在WGAN训练过程中引入残差网络,使得生成的绝缘子图片更加清晰;其次在损失函数中引入Wasserstein距离以保证训练过程的稳定性;最后通过优化模型的训练过程,使得生成的绝缘子图片细节还原度更高。绝缘子图片去模糊化实验结果表明,所提方法在结构相似性与峰值信噪比等评价指标上均高于基于卷积神经网络与深度多尺度卷积神经网络等图像去模糊算法。另外,将利用所提方法生成的绝缘子图片与模糊绝缘子图片划分为3组,采用改进的基于区域建议的卷积神经网络目标检测算法分别进行目标检测实验,精确度均值分别提高了5.77%、6.73 %与5.98 %,有效提高了绝缘子的目标检测率。
1
在PyTorch和PyTorch Lightning中生成深度学习模型的实现 DCGAN 论文: 作者:Alec Radford,Luke Metz,Soumith Chintala 代码(PyTorch): 由 码(闪电): 由 去做 DCGAN Pix2Pix 循环GAN SRGAN
2021-11-02 11:09:05 2.24MB pytorch generative-adversarial-network dcgan gans
1
图像超分辨率重建( super - resolution,SR) 是指从观测到的低分辨率图像重建出相应的高.分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值. 近年来,随着深度.学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步. 为了把握目前基于.深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像.超分辨率重建方法进行了梳理,将它们分为两大类( 有监督的和无监督的) 分别进行阐述. 然后,.在公开的数据集上,将主流方法的性能进行了对比分析. 最后,对基于深度学习的图像超分辨率.重建方法进行了总结,并对其未来的研究趋势进行了展望.
1
PyTorch GAN :laptop:与 :laptop: = :red_heart: 此仓库包含各种GAN架构的PyTorch实现。目的是使初学者更容易开始玩和学习GAN。 我发现的所有存储库都掩盖了某些内容,例如将某些网络层中的偏向设置为False而没有解释为什么要做出某些设计决定。此仓库使每个设计决策透明。 目录 什么是GAN? GAN最初是由Ian Goodfellow等人提出的。在一份名为“的开创性论文中。 甘斯是一个框架,2个模型(通常为神经网络),称为发电机(G)和鉴别器(d),玩游戏极大极小彼此抵靠。生成器正在尝试学习真实数据的分布,这是我们通常感兴趣的网络。在游戏中,生成器的目的是欺骗鉴别器“思考”它生成的数据是真实的。另一方面,鉴别器的目的是正确地区分生成的(伪)图像和来自某些数据集(例如MNIST)的真实图像。 设置 git clone https://github.com/gordicaleksa/py
2021-11-01 11:04:11 65.9MB python machine-learning deep-learning pytorch
1
PyTorch生成对抗网络(DCGAN)代码
2021-10-30 21:07:04 4KB PyTorch生成对抗网络 DCGAN
使用条件生成对抗网络进行图像去雨 [] [] 何章,Vishwanath Sindagi,Vishal M.Patel 在本文中,我们研究了解决单图像去水印问题的新观点。 我们不仅要确保决定什么是实现良好的定量和定性性能的良好先验或良好框架,还应确保排水良好的图像不会降低给定计算机视觉算法(如检测和分类)的性能。 换句话说,消除雨水的结果应该与其对应的清晰图像与给定的鉴别器没有区别。 通过使用最近引入的条件生成对抗网络(GAN),可以将该标准直接合并到优化框架中。 为了最大程度地减少GAN引入的伪像并确保更好的视觉质量,引入了新的精确损失函数。 @article{zhang2017image, title={Image De-raining Using a Conditional Generative Adversarial Network}, author={Zhan
2021-10-28 20:18:27 2.7MB deep-learning gan id-cgan rain-removal
1
针对多模态图像融合中多尺度几何工具和融合规则设计困难的问题,提出一种基于生成对抗网络(GANs)的图像融合方法,实现了多模态图像端到端的自适应融合。将多模态源图像同步输入基于残差的卷积神经网络(生成网络),通过网络的自适应学习生成融合图像;将融合图像和标签图像分别送入判别网络,通过判别器的特征表示和分类识别逐渐优化生成器,在生成器和判别器的动态平衡中得到最终融合图像。与具有代表性的融合方法相比,实验结果表明,本文方法的融合结果更干净,没有伪影,提供了更好的视觉质量。
2021-10-26 16:25:39 12.19MB 图像处理 图像融合 多模态图 深度学习
1