储能利用MPC模型对风电与光伏功率波动的控制:平抑效果与SOC变化可视化Matlab程序,储能利用MPC模型平抑风电光伏功率波动:Matlab程序实现与结果分析,储能利用模型预测控制(MPC)平抑风电 光伏功率波动Matlab程序(只能实现平抑波动,出图包括储能充放电曲线,平抑前后功率对比,SOC状态变化) ,核心关键词:储能利用;模型预测控制(MPC);平抑风电光伏功率波动;Matlab程序;充放电曲线;功率对比;SOC状态变化。,Matlab程序:基于MPC的储能系统平抑风电光伏功率波动,展示充放电曲线与SOC变化
2025-08-07 21:47:53 1.54MB paas
1
内容概要:本文介绍了基于蜣螂优化算法(DBO)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量时序预测项目。该项目旨在提升多变量时序预测的准确性,通过融合CNN提取局部时空特征、BiLSTM捕捉双向长短期依赖、注意力机制动态加权关键时间点和特征,以及DBO算法智能优化模型参数,解决传统方法难以捕获长短期依赖和多变量非线性交互的问题。项目解决了多变量时序数据的高维复杂性、模型参数难以调优、长期依赖难以捕获、过拟合与泛化能力不足、训练时间长、数据噪声及异常值影响预测稳定性、复杂模型可解释性不足等挑战。模型架构包括输入层、卷积层、双向长短期记忆层(BiLSTM)、注意力机制层和输出层,参数优化由DBO负责。; 适合人群:对深度学习、时序数据分析、群体智能优化算法感兴趣的科研人员、工程师及研究生。; 使用场景及目标:①提升多变量时序预测准确性,满足实际应用对预测精度的高要求;②实现模型参数的智能优化,减少人工调参的工作量和盲目性;③解决时序数据的非线性和动态变化问题,适应真实场景中的时变特性;④推动群体智能优化算法在深度学习中的应用,探索新型优化算法与深度学习结合的可行路径。; 阅读建议:本文涉及多变量时序预测的理论背景、模型架构及其实现细节,建议读者在阅读过程中结合MATLAB代码示例进行实践,深入理解各个模块的作用及优化策略。
2025-08-05 21:53:24 31KB 深度学习 时序预测
1
内容概要:本文详细介绍了一个基于改进蜣螂算法(MSADBO)优化卷积长短期记忆神经网络(CNN-LSTM)的多特征回归预测项目。项目旨在通过优化超参数选择,提高多特征回归问题的预测精度。主要内容包括:项目背景、目标与意义、挑战及解决方案、特点与创新、应用领域、模型架构及代码示例。项目通过MSADBO算法自动优化CNN-LSTM模型的超参数,解决了传统方法效率低、易陷入局部最优解等问题。此外,项目还探讨了如何通过数据预处理、特征提取、模型架构设计等手段,提高模型的计算效率、可解释性和适应性。; 适合人群:具备一定机器学习和深度学习基础,对优化算法和时间序列预测感兴趣的科研人员及工程师。; 使用场景及目标:①提高多特征回归问题的预测精度;②优化超参数选择,减少手动调参的工作量;③改进优化算法,提升全局搜索能力;④拓展应用领域,如金融预测、气候变化预测、能源管理等;⑤提高计算效率,减少模型训练时间;⑥增强模型的可解释性和适应性,提升实际应用中的表现。; 其他说明:此项目不仅注重理论研究,还特别考虑了实际应用的需求,力求使模型在真实场景中的表现更为优异。项目代码示例详细展示了从数据预处理到模型预测的完整流程,为读者提供了实践指导。
2025-08-05 21:52:42 44KB Python 超参数优化
1
内容概要:本文介绍了一种创新的时间序列预测模型MSADBO-CNN-BiGRU,该模型结合了蜣螂优化算法(MSADBO)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)。模型通过Python代码实现了数据预处理、模型构建、参数优化以及结果可视化。文中详细解释了模型的关键组件,如Bernoulli混沌初始化、改进的正弦位置更新和自适应变异扰动。此外,还提供了具体的参数优化范围和注意事项,确保模型能够高效地进行时间序列预测。 适合人群:从事时间序列预测研究的技术人员、数据科学家以及有一定机器学习基础的研究人员。 使用场景及目标:适用于需要高精度时间序列预测的任务,如电力负荷预测、金融数据分析、销售预测等。目标是通过优化模型参数,提高预测准确性,降低均方误差(MSE)和平均绝对百分比误差(MAPE)。 其他说明:模型的性能依赖于数据质量和参数设置。建议初学者先使用提供的示范数据集进行实验,熟悉模型的工作流程后再应用于实际数据。遇到预测效果不佳的情况,应首先检查数据的质量和特征工程是否到位。
2025-08-05 21:50:30 146KB
1
clock.zip 基于机器学习的卫星钟差预测方法研究HPSO-BP
2025-08-05 19:20:02 16.59MB BP
1
遗传算法是一种模拟生物进化过程的搜索优化算法,它通过自然选择、遗传、变异等操作对解空间进行高效搜索,以寻找问题的最优解或近似最优解。在路径规划问题中,遗传算法能够有效地解决仓库拣货路径优化问题,其核心思想是在一组潜在的解决方案中,通过迭代选择、交叉和变异等操作,逐步优化路径,以减少拣货过程中的总移动距离,提高仓库作业效率。 仓库拣货路径优化问题是指在仓库管理中,如何设计一条路径使得拣货员或者机器人从起点出发,经过所有待拣货物点一次且仅一次后,返回终点,使得总移动距离最短。这是一个典型的组合优化问题,属于旅行商问题(TSP)的一种变体。由于仓库货物点多,路径选择复杂,传统的穷举搜索方法或简单启发式算法难以在有限的时间内得到最优解,因此遗传算法因其全局搜索能力和较快的收敛速度成为解决此类问题的重要手段。 使用遗传算法解决仓库拣货路径优化问题,通常包括以下几个关键步骤: 1. 初始化:随机生成一组初始解,构成初始种群。 2. 适应度评价:根据路径总距离,评价每个个体(解决方案)的优劣。 3. 选择操作:根据适应度值选择优秀的个体遗传到下一代,常用的有轮盘赌选择、锦标赛选择等。 4. 交叉操作:模拟生物的遗传过程,两个父代个体通过某种方式交换部分基因,产生子代,子代继承父代的优良特性。 5. 变异操作:为了维持种群的多样性,通过随机改变某些个体的部分基因,避免算法陷入局部最优解。 6. 终止条件判断:如果满足预定的终止条件(如达到一定的迭代次数或适应度达到预定值),则输出最优解;否则,返回步骤2继续迭代。 Matlab是一种用于数值计算、可视化以及编程的高性能语言和交互式环境,它广泛应用于工程计算、数据分析、算法开发等领域。Matlab提供的矩阵操作和内置函数库可以方便地实现遗传算法的编码、运算和结果可视化。在路径规划问题中,Matlab可以帮助开发者快速构建问题模型,实现算法逻辑,并对路径规划结果进行仿真和分析。 在本压缩包文件中,包含了一段名为“【路径规划】遗传算法求解仓库拣货距离最短优化问题【含Matlab源码 2154期】.mp4”的视频文件,该文件可能记录了整个仓库拣货路径优化问题的解决方案的设计、编码、运行以及结果展示。视频内容可能涵盖了遗传算法在路径规划中的具体应用,包括问题描述、算法设计、Matlab代码实现以及仿真实验等。通过观看视频,可以直观地了解算法的运行机制和路径优化的整个流程。 利用遗传算法进行仓库拣货路径优化是一个复杂但有效的过程,它能够通过模拟生物进化原理,找到较为理想的拣货路径,从而提高仓库作业效率,减少物流成本。同时,Matlab作为一种强大的数学计算和仿真工具,为路径优化问题的解决提供了便利的实现平台。
2025-08-04 01:07:44 2.84MB
1
目前光学薄膜设计大多为单目标寻优设计,难以满足一些复杂光学薄膜的需求。构建出光学薄膜的多目标优化膜系,设计一种新型、高效的多目标遗传算法(DMOGA)用于模型的求解。该算法使用基于支配关系的选择策略、基于动态聚集距离削减非支配解集规模、动态调整算法运行参数等策略使得DMOGA不仅容易实现,而且能得到较好分布性和逼近性的解。将DMOGA应用于光学薄膜的优化设计实例中,取得良好的效果,表明了多目标优化在光学薄膜设计中的有效性以及应用前景。
2025-08-02 18:27:05 1.72MB 优化设计 遗传算法 thin
1
内容概要:本文介绍了基于深度混合核极限学习机(DHKELM)的回归预测方法及其优化算法。DHKELM结合了极限学习机和混合核技巧的优点,适用于处理复杂的非线性问题。文中详细解释了DHKELM的工作原理,包括非线性变换、特征提取和降维。优化算法部分主要介绍了北方苍鹰NGO算法以及其他替代方法,如梯度下降和遗传算法。此外,还提供了Python代码示例,展示了模型的训练和预测过程。最后,通过对多个数据集的实验验证,证明了DHKELM在非线性问题处理方面的优越性能。 适合人群:从事机器学习、数据分析和人工智能领域的研究人员和技术人员。 使用场景及目标:适用于需要处理复杂非线性数据的回归预测任务,旨在提高预测的准确性和稳定性,缩短模型训练时间。 其他说明:尽管DHKELM表现出色,但在处理高维数据时可能需要额外的特征提取方法,优化算法的选择也会显著影响模型性能。未来研究方向包括探索DHKELM在更多领域的应用以及优化方法的改进。
2025-08-01 20:28:56 533KB 深度学习 极限学习机 启发式优化
1
通过lightGBM模型进行风电预测_LightGBM
2025-08-01 15:06:04 25.41MB
1
PMSM模型预测电流控制集(MPCC)的多矢量与多步预测技术——涵盖仿真模型与文档,PMSM模型预测电流控制集(MPCC)的矢量预测与多步仿真模型解析,PMSM模型预测电流控制集(MPCC):单矢量,双矢量,三矢量;单步预测,两步预测,三步预测;两点平,三电平;无差拿预测...... 仿真模型和文档包括且不限于:见图。 ,PMSM模型; MPCC; 矢量控制; 预测电流控制; 单步/两步/三步预测; 电平数; 无差拍预测; 仿真模型; 文档。,PMSM电流控制策略:MPCC单矢量至三矢量预测控制与无差拍仿真研究
2025-07-26 21:35:07 1.31MB kind
1