在此代码中,量子粒子群优化 (QPSO) 用于解决多目标组合经济排放调度 (CEED) 问题,该问题使用三次准则函数制定,并考虑单向最大/最大价格惩罚因子。 QPSO 在 6 单元发电系统上实现,并与拉格朗日松弛、粒子群优化 (PSO) 和模拟退火 (SA) 进行比较。 所得结果验证了QPSO方法的有效性并证明了其鲁棒性。 这项研究表明,QPSO 可用作解决其他电力调度问题的有效且稳健的工具。
2022-05-20 15:29:26 4KB matlab
1
提出了一种多主体疏散模型,以模拟体育场内有无障碍物的行人疏散过程。作者给出了一种多主体个体决策框架,其中每个行人(称为主体)的行动方向受主体到出口的距离以及主体视野内乘员数量和密度的影响。与现有结果不同,作者将体育场内的所有行人分为四类:青年男性,青年女性,老年男性和老年女性。在疏散过程中,影响每类代理之间的个体决策的权重是不同的。在仿真中,作者介绍了疏散过程中障碍物,人群分布和出口位置的影响。仿真结果表明,所提出的模型能够准确再现体育场内的实际疏散过程。因此,该方法可能对评估公共建筑设计很有用。
2022-05-19 10:37:34 590KB Cellular automaton; multi-agent; pedestrian
1
多维集成经验模态分解法(THE MULTI-DIMENSIONAL ENSEMBLE EMPIRICAL MODE DECOMPOSITION METHOD,MEEMD)
2022-05-17 14:53:13 2.44MB MEEMD
1
圈子框架 总览 这个CIRCLES框架旨在使开发人员可以轻松地在另一个WebXR框架框架之上创建多用户和多平台的内容,并通过提供。 CIRCLES开发是多用户VR / AR研究项目的一部分,该研究将不断发展,因为研究表明用户如何在可变VR空间中彼此交互。 我们目前的重点是在正式(教室)和非正式(博物馆)教育环境中; 但是我们的目标是尽可能保持框架的灵活性,以实现更大的创造力。 CIRCLES的(3)主要目标如下: 设备可扩展性 创建一个框架,使其可以在支持VR / AR的各种平台上显示。 当前的重点是支持桌面,移动和独立HMD(例如Oculus Quest)。 交互技术将保持简单明了,以便在
2022-05-14 11:17:32 212.52MB education multi-platform webvr virtual-reality
1
多批次LBFGS 该代码是用于神经网络训练的革命性优化器的实现。 它的全名是“带CUDA的多批次L-BFGS优化器”。 如今,著名的机器学习框架(例如Tensorflow)通常提供“基于梯度”的优化器(GradientDescent,AdaGrad),该优化器通过计算梯度并将其应用于网络来发挥作用。 该代码为Tensorflow实现了一个经过优化的优化器,它采用了“多批L-BFGS”算法(一种基于准牛顿算法的变体),我覆盖了Tensorflow的优化器的默认实现,并定义了一种用于梯度计算的拟新方法,该方法结合了二阶信息,其执行方式比默认优化器更好。 此外,我通过介绍CUDA技术来优化此优化器。 我在GPU上分配计算步骤。 它将优化器的性能提高至少20%。
2022-05-09 17:51:35 31KB Python
1
百度apollo定位文献中文翻译 Robust and Precise Vehicle Localization based on Multi-sensor Fusion in Diverse City Scenes
2022-05-07 11:24:08 4.26MB 百度apollo 定位
1
matlab匹配滤波代码多目标MI-ACE和MI-SMF: 多目标多实例自适应余弦估计器和光谱匹配滤波器,用于使用不确定标记数据的目标检测 James Bocinsky,Susan Meerdink,Connor H.McCurley和Alina Zare 如果您使用此代码,请引用为: James Bocinsky,Susan Meerdink,Connor H.McCurley和Alina Zare。 (2020年,3月25日)。 GatorSense / Multi-Target-MI-ACE_SMF:初始版本(版本v1.0)。 Zenodo。 相关文章为:SK Meerdink,J。Bocinsky,A。Zare,N。Kroeger,CH McCurley,D。Shats和PD Gader。 审查中的IEEE TGRS中的“用于高光谱目标检测的多目标多实例学习”。 在此存储库中,我们提供了多目标MI-ACE和MI-SMF算法的论文和代码。 安装先决条件 此代码使用MATLAB Statistics和Machine Learning工具箱,MATLAB Optimization T
2022-05-07 11:23:40 1.58MB 系统开源
1
FairMOT 单次多对象跟踪的简单基准: ,张以夫,王春雨,王兴刚,曾文俊,刘文宇arXiv技术报告( ) 抽象的 近年来,作为多目标跟踪的核心组件的目标检测和重新识别取得了显着进展。但是,很少有人关注在单个网络中完成两项任务以提高推理速度。沿此路径进行的初始尝试最终导致结果降低,这主要是因为未正确学习重新标识分支。在这项工作中,我们研究了故障背后的根本原因,并因此提出了解决问题的简单基准。在30 FPS时,它的性能明显优于MOT挑战数据集上的最新技术。我们希望这个基准可以启发并帮助评估该领域的新想法。 消息 (2020.09.10)FairMOT的新版本发布了! (在MOT17上为73.7 MOTA) 主要更新 我们使用自我监督的学习方法在CrowdHuman数据集上对FairMOT进行了预训练。 要检测图像外部的边界框,我们使用左,上,右和下(4通道)来替换WH头(2通道)。
1
使用NCCL进行多GPU深度学习训练,其中涉及多机多卡,单机多卡等技术。 Optimized inter-GPU communication for DL and HPC Optimized for all NVIDIA platforms, most OEMs and Cloud Scales to 100s of GPUs, targeting 10,000s in the near future. Aims at covering all communication needs for multi-GPU computing. Only relies on CUDA. No dependency on MPI or any parallel environment.
2022-05-01 20:37:44 453KB GPU AI 深度学习 NVIDIA
1