ocr文字识别框架,基于百度飞浆的GPU加速版本,可以直接在windows上下载安装使用,方便快捷。
2025-04-18 22:19:21 387.57MB paddlepaddle
1
在MATLAB中编写代码涉及到许多方面,包括语法、函数、数据类型、控制结构以及特定领域的应用,如在本例中的“离散偶极近似(DDA)”和GPU计算。DDA是一种常用于模拟电磁场传播的数值方法,尤其在天线设计和射频工程中。下面将详细介绍如何在MATLAB中实现GPU加速的DDA算法。 1. **MATLAB基础** 在开始编程之前,确保熟悉MATLAB的基本语法和操作。MATLAB是一种交互式的环境,支持矩阵和向量运算,这对于科学计算尤其方便。了解变量定义、运算符、流程控制(如for循环和if语句)、函数定义和调用是必要的。 2. **GPU编程概念** GPU(图形处理单元)被广泛用于高性能计算,因为它能并行处理大量数据。MATLAB通过CUDA(Compute Unified Device Architecture)接口支持GPU计算。理解GPU并行计算的基本原理,例如线程块、网格、共享内存和全局内存,对于有效利用GPU资源至关重要。 3. **GPU工具箱** MATLAB的Parallel Computing Toolbox提供了与GPU交互的功能。使用`gcp`函数获取GPU的计算上下文,`gpuArray`函数可以将数据转移到GPU上进行计算,而`gather`或`gatherSync`则将结果回传到CPU。 4. **DDA算法** DDA算法是一种简单的数值方法,它通过将连续体(如电偶极子)离散化为一系列点来模拟。每个点代表一个电偶极子,其产生的电场和磁场可以通过点之间的差分公式计算。理解这些差分方程是实现DDA的关键。 5. **MATLAB中实现DDA** 在MATLAB中,首先定义偶极子的位置、长度和方向,然后计算每个点对目标位置的贡献。这通常涉及二维或三维数组操作,可以利用GPU的并行性加速。编写函数以处理这些计算,并使用`gpuArray`对输入数据进行预处理。 6. **并行计算优化** 为了最大化GPU的性能,应优化代码以减少数据传输和内存访问。例如,尽量减少在GPU和CPU之间交换数据的次数,使用共享内存来存储局部变量,以及合理安排计算任务以避免内存冲突。 7. **测试与调试** 编写完成后,进行充分的测试以验证算法的正确性和效率。使用MATLAB的性能分析工具(如`profile`或`profvis`)来识别和优化性能瓶颈。 8. **代码组织** 使用MATLAB的类(class)结构可以更好地组织代码,提高可读性和可维护性。创建一个DDA类,其中包含初始化、计算和输出结果的方法。 9. **系统开源** 如果标签“系统开源”意味着要公开源代码,那么你需要遵循开源许可协议,例如MIT、GPL或Apache 2.0。在项目中添加适当的许可证文件,并确保所有依赖库也符合相同的许可要求。 10. **文档和注释** 提供详细的文档和代码注释,解释算法的工作原理、函数的作用以及参数的意义,这对于其他用户理解和复用你的代码至关重要。 以上内容涵盖了从基础的MATLAB编程到GPU加速的DDA算法实现的各个方面。在实际编写代码时,应根据具体需求和问题规模进一步细化和调整这些步骤。
2025-04-15 08:44:07 702KB 系统开源
1
tensorflow_gpu-1.12.0-cp36-cp36m-win_amd64版本离线安装包,
2025-04-11 20:51:32 130.26MB Tensorflow
1
内容概要:这篇文档详细讲解了PyTorch的入门与应用方法。首先简述了PyTorch作为现代深度学习框架的优势与应用场景。随后介绍了如何安装和配置PyTorch开发环境,涉及Python版本选择和相关依赖库的安装。接着解释了PyTorch中最核心的概念——张量,及其创建、操作和与Numpy的互转等知识点。自动求导部分讲述了计算图的构建、自动求导的工作原理及参数更新的流程。神经网络方面,则涵盖了自定义神经网络的建立,包括常见的层如全连接层、卷积层等,并介绍了常见损失函数(如均方误差、交叉熵)及优化器(SGD、Adam)。最后,通过CIFAR-10图像分类任务的实际操作案例,展示了如何从头到尾实施一个完整的机器学习项目,包括数据加载、模型设计、训练、评估等一系列流程。此外还提及了后续扩展学习方向以及额外的学习资源推荐。 适合人群:主要面向希望掌握PyTorch框架并在实践中理解深度学习技术的专业人士或爱好者。 使用场景及目标:适用于希望深入学习PyTorch并能够独立构建和训练模型的技术人员;目标是在实际工作中运用PyTorch解决复杂的深度学习问题。 阅读建议:本文档适合有一定编程经验且
2025-04-07 14:45:52 333KB 深度学习 PyTorch GPU加速 自动求导
1
(1)提供tensorrt-8.2.3.0-cp38-none-linux_aarch64.whl和onnxruntime_gpu-1.16.0-cp38-cp38-linux_aarch64.whl,严格匹配JetPack4.6(CUDA10.2+Python3.8)环境,规避手动编译耗时与依赖冲突问题‌。 (2)支持YOLOv8/v11模型的TensorRT加速推理,集成ONNX模型转换工具链(ONNX→TensorRT引擎),提升推理速度3倍+‌。
2025-03-31 18:45:16 23.48MB JetsonNano tensorRT ONNX
1
标题中的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”是一个针对GPU优化的ONNX运行时库的压缩包,版本为1.18.0,适用于Python 3.8,并且是为Linux上的ARM架构(aarch64)设计的。ONNX(Open Neural Network Exchange)是一个开放的模型交换格式,它允许在不同的深度学习框架之间共享和运行模型。ONNX运行时则是用来执行这些模型的库。 描述中提到“适用JetPack 5.1.2”,JetPack是NVIDIA为Jetson系列嵌入式计算平台提供的软件开发套件,包含Linux操作系统、驱动程序、CUDA、cuDNN等。 JetPack 5.1.2是其中的一个特定版本,它包含了对Jetson设备的优化支持。同时,警告不要升级Jetson系统默认的Python 3版本,因为这个版本的ONNX运行时已经针对该特定Python环境进行了编译和优化,升级可能导致兼容性问题。 “标签”中的“linux”表明这是一个与Linux操作系统相关的软件包。 在压缩包内的文件“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”是一个Python的whl(wheel)文件,它是预编译的Python包格式,可以直接用pip安装,无需编译源代码。这个文件包含了ONNX运行时的GPU版本,适合在Linux环境下运行GPU加速的深度学习模型。 另一个文件“使用说明.txt”可能是关于如何在JetPack 5.1.2和Python 3.8环境中安装和使用ONNX运行时GPU版的指南。通常,它会包含以下步骤: 1. 确保你的Jetson设备已经更新到JetPack 5.1.2,并且保持Python 3.8不变。 2. 解压下载的“onnxruntime-gpu-1.18.0-cp38-cp38-linux-aarch64.whl.zip”压缩包。 3. 进入解压后的目录,找到“onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl”文件。 4. 使用pip安装whl文件: ``` pip install onnxruntime_gpu-1.18.0-cp38-cp38-linux_aarch64.whl ``` 5. 安装完成后,你可以通过导入`onnxruntime`模块来使用ONNX运行时,例如: ```python import onnxruntime ``` 6. 根据你的模型,创建会话实例并进行预测: ```python sess = onnxruntime.InferenceSession("path_to_your_model.onnx") output = sess.run(None, {"input_name": input_data}) ``` 7. 查看“使用说明.txt”以获取更多关于配置、性能调优以及解决常见问题的指导。 这个压缩包提供了在NVIDIA Jetson平台上运行ONNX模型所需的GPU加速的ONNX运行时库,适用于那些需要在边缘设备上进行高效推理的工作场景。遵循提供的说明,开发者可以轻松地将预训练的深度学习模型部署到Jetson设备上。
2024-10-24 17:24:00 68.05MB linux
1
“pip install pycuda-2020.1+cuda101-cp37-cp37m-win_amd64.whl ”安装pycuda。python3.7版本
2024-10-03 00:42:24 352KB gpu pycuda
1
GPU Gems 3 中文版
2024-09-18 10:06:37 58.72MB graphics gpu
1
GPU Gems 3 中文版
2024-09-18 10:02:02 75MB graphics gpu
1
针对三维天空场景仿真中出现的场景实时性和真实性不能满足用户的需求等问题,提出了基于GPU (graphic processing unit)的动态天空场景仿真方法.在开源场景图形系统(OpenSceneGraph)开发平台上,使用基于物理的方法计算出一天中不同时刻天空的背景色;采用shader技术,用OpenGL着色语言(GLSL)在GPU上对云、太阳进行模拟;针对太阳的位置,绘制出具有真实感效果的光晕.实验结果表明,该仿真方法可以绘制出具有动态效果的、天空颜色能平滑过渡的天空场景,并且真实感强.
2024-09-15 23:44:35 439KB 图形处理器;
1