三维N $$ \ mathcal {N} $$ = 4个超对称量子场论接受了两种拓扑扭曲,即Rozansky-Witten扭曲及其镜像。 可以使用任何一种扭曲来定义Riemann表面上的超对称压缩和超对称基态的相应空间。 这些基态空间可以在“几何朗兰兹”程序中扮演有趣的角色。 我们建议将这些空间描述为某些非单一顶点算子代数的共形块,并在一些重要示例中测试我们的猜想。 这两个VOA可以分别根据N $$ \ mathcal {N} $$ = 4理论或其镜像的UV拉格朗日描述来构造。 我们进一步推测,与N $$ \ mathcal {N} $$ = 4 SQFT相关的VOA继承了仅在IR中出现的理论属性,例如增强的全局对称性。 因此,VOA的知识应该允许人们为IR SCFT的整个对称组的超对称背景连接耦合的理论计算超对称基态的空间。 特别是,我们为T [SU(N)]理论提出了基态空间的共形场论描述。 这些理论在最大超对称SU(N)规范理论中扮演S-对偶核的角色,因此,超对称基态的相应空间应为特殊unit群的几何Langlands对偶性提供一个核。
1