Breast_Cancer_Classification 利用逻辑回归和神经网络模型基于数字化活检图像将乳腺癌肿瘤分类为恶性或良性
2021-12-05 15:49:54 582KB HTML
1
基于注意力机制的混合神经网络模型的文本分类,秦丽萍,杨金民,文本分类是自然语言处理(NLP)中的重要任务之一。在文本分类中,句子建模是至关重要的。在已存在的工作中,卷积神经网络(CNN)能
2021-12-03 15:17:52 617KB 文本分类
1
递归神经网络模型用于纠错 该存储库提供了在描述的各种模型的源代码。 该项目旨在实现和评估神经网络模型,特别是递归神经网络(RNN),双向递归神经网络(BRNN),序列到序列(seq-to-seq)模型以及最终基于注意力的机制。序列到序列模型。 下图说明了预测给定不正确短语的正确形式的编码器-解码器模型。 DyNet库 在当前项目的实施中,我们一直在使用DyNet。 动态神经网络工具包或DyNet是一个神经网络库,适用于具有动态结构的网络。 DyNet支持在神经网络计算中使用的静态和动态声明策略。 在动态声明中,每个网络都是通过使用有向和无环计算图构建的,该图由定义模型的表达式和参数组成。 DyNet在CPU或GPU上有效工作,最近为许多NLP研究论文和项目提供了支持。 您可以找到有关DyNet的更多信息。 资料集 我们的方法与语言无关。 专门针对我们的项目,我们使用对模型进行了训练和评估,
1
High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption. One of the most important steps in accelerator development is hardware-oriented model approximation. In this paper we present Ristretto, a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers. Ristretto can condense models by using fixed point arithmetic and representation instead of floating point. Moreover, Ristretto fine-tunes the resulting fixed point network. Given a maximum error tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available. Comments: 8 pages, 4 figures, Accepted as a workshop contribution at ICLR 2016. Updated comparison to other works Subjects: Computer Vision and Pattern Recognition (cs.CV)
1
斯坦福机器学习编程作业machine-learning-ex4,神经网络模型,Neural Networks Learning题目,满分,2015最新作业答案 MATLAB 满分
2021-11-27 16:56:08 7.61MB Neural Networks Learning
1
这是介绍径向基神经网络的视频,非常简单适用,适合从来不知道神经网络为何物的菜鸟。由于本人权限问题,只能分成5部分上传。为了方便大家下载,只有第一部分收资源分。这是第二部分。
2021-11-19 12:12:00 9.54MB 神经网络 径向基 RBF
1
该模型主要是以多元回归为主,比如:多对一的输出,多对多的输出,都可以用回归模型解决。文件分为两种:一种是针对随机产生的数据写的多元回归模型;另一种是根据真实的文件数据写的多元回归模型。两个模型大同小异,主要的不同就是数据的生成方式,一个是随机,一个是文件导入。多元线性回归模型是基于pytorch完成的,对于初学者绝对的友好。
2021-11-18 15:01:25 14KB 多元线性回归 神经网络模型
Ⅰ:运用BP神经网络对下面函数进行训练:① y=sin(x);x=[0,2*pi] ②y=x1(XOR)x2 Ⅱ:通过神经网络模型蠓虫数据进行分类,并对结果进行分析。生物学家试图对两种蠓虫(Af与Apf)进行鉴别,依据的资料时触角和翅膀的长度,已经测得了9支Af和6支Apf的数据如下:Af:(1.24,1.27),(1.36,1.74),(1.38,1.64),(1.38,1.82),(1.38,1.90),(1.40,1.70),(1.48,1.82),(1.54,1.82),(1.56,2.08)Apf:(1.14,1.82),(1.18,1.96),(1.20,1.86),(1.26,2.00),(1.28,2.00),(1.30,1.96)对触角和翼长分别为(1.24,1.80),(1.28,1.84)与(1.40,2.04)的3个标本,用所得到的方法加以识别。 代码+课程报告
2021-11-17 14:18:33 467KB BP神经网络
1
主要适用于openart,openmv h7、openmv h7plus稍逊
1
脉冲神经网络是目前最具有生物解释性的人工神经网络,是类脑智能领域的核心组成部分.首先介绍各类常用的脉冲神经元模型以及前馈和循环型脉冲神经网络结构;然后介绍脉冲神经网络的时间编码方式,在此基础上,系统地介绍脉冲神经网络的学习算法,包括无监督学习和监督学习算法,其中监督学习算法按照梯度下降算法、结合STDP规则的算法和基于脉冲序列卷积核的算法3大类别分别展开详细介绍和总结;接着列举脉冲神经网络在控制领域、模式识别领域和类脑智能研究领域的应用,并在此基础上介绍各国脑计划中,脉冲神经网络与神经形态处理器相结合的案例;最后分析脉冲神经网络目前所存在的困难和挑战.
1