OpenCV,全称为Open Source Computer Vision Library,是一个强大的计算机视觉和机器学习库,广泛应用于图像处理和计算机视觉领域。它支持多种编程语言,包括C++、Python、Ruby等,并且可以在Linux、Windows、Android以及Mac OS等操作系统上运行。OpenCV的核心特点是其轻量级和高效性,由C函数和C++类组成,提供了丰富的图像处理和计算机视觉算法。 在ESP32和ESP32S3这样的微控制器上移植OpenCV,意味着我们可以将高级的图像处理技术应用于嵌入式系统,例如物联网(IoT)设备。ESP32S3是Espressif Systems推出的一款集成了Wi-Fi和蓝牙功能的SoC,适用于移动设备、可穿戴设备和智能家居等场景。与ESP32相比,ESP32S3具有双核CPU,更加强大的处理能力,特别是对于图像处理任务,其中Core0用于处理Wi-Fi数据传输,而Core1则专注于视觉处理任务。 移植OpenCV到ESP32S3时,硬件电路设计至关重要。考虑到内存需求,通常会选用内置8MB Flash和8MB SPI RAM的模块。此外,选用如OV2640这样的摄像头模块作为输入源,以及一个240x240 LCD屏幕用于实时显示图像处理结果,便于调试。这样的开发板在电商平台上可以找到,搜索关键词“esp32s3 opencv”即可。 移植过程中,软件部分的实现包括目标检测和颜色识别。在目标检测示例中,首先将RGB565格式的图像转换为灰度图像,然后进行二值化处理,以便更容易地识别目标。使用的OpenCV函数包括`cvtColor()`和`threshold()`。二值化后的图像能够清晰地突出目标物体。 对于颜色识别,如果图像格式为JPEG,可以直接在LCD屏幕上显示。如果不是,则可以读取像素值进行分析。例如,使用`Mat::at()`函数获取指定位置的像素RGB值,从而实现颜色识别。开发板提供的DEMO源代码可以通过ESP-IDF(Espressif IoT Development Framework)进行编译和运行。 将OpenCV移植到ESP32S3这样的微控制器上,可以实现低功耗、高性能的图像处理解决方案,这对于物联网应用尤其有价值。通过无线Wi-Fi传输识别结果,可以构建远程监控、智能安全系统等创新应用。这种移植不仅扩展了OpenCV的应用范围,也为嵌入式系统开发带来了新的可能性。
2025-06-18 15:28:45 687KB opencv esp32 图像识别
1
在探讨openmv相关资料的查找方法时,主要可以围绕其软件和硬件使用教程、与STM32的串口通信、视觉识别、神经网络训练以及库函数的查询等方面进行深入挖掘。 对于openmv的基础使用,可以通过观看专门的视频教程来快速入门。例如,B站上的相关视频能够帮助新手理解openMV软件和硬件的基本使用方法。视频内容通常包括介绍硬件设备、软件界面操作以及一些基础的编程示例,对于初学者而言,这是一种直观且有效的方式。 针对openmv与STM32的结合使用,特别是在视觉循迹功能的实现上,可参考的资源有B站上的“STM32智能小车V3-FreeRTOS实战项目STM32入门教程-openmvSTM32循迹小车stm32f103c8t6-电赛嵌入式PID控制算法”等视频教程。这类教程往往会一步步地教授视觉识别、通信过程、PID控制算法等复杂内容,并通过实际项目来加深理解。这对于希望将openmv应用于复杂项目的开发者尤其有价值。 在学习openmv的过程中,开放的学习平台如CSND(China Software Developer Network,中文名为“中国软件开发者网络”)提供了大量的学习资源。用户可以在该平台找到许多关于openmv的教程、实例以及经验分享,这对于解决学习中遇到的难题非常有帮助。CSND聚集了大量编程爱好者和专业开发者,通过社区交流可以获得第一手的问题解答与技术支持。 除了视频和社区外,openmv官方提供的文档和库函数参考也是重要资源。例如,可以通过访问https://book.openmv.cc获取openmv的官方学习资料。而官方库函数的查询可以通过https://docs.singtown.com/micropython/zh/latest/openmvcam/openmvcam/quickref.html等链接来完成,这些文档能够帮助开发者快速查找和理解各个库函数的用法。 对于希望进一步提升编程能力和理解代码逻辑的开发者,可以利用如chatGPT和deepseek这类工具。这些工具能够提供代码改进建议、逻辑解释等辅助,使得开发者能够更深入地理解openmv的代码实现及其背后的原理。 查找openmv相关资料的途径多种多样,结合视频教程、在线文档、开发者社区以及智能工具,可以帮助开发者从基础到深入全面掌握openmv的使用,进而在项目中有效地应用这一强大的微控制器。
2025-06-12 17:38:23 1000B
1
1.内含两个程序; 2.在连接好所有电路接线后,使用此程序测试; 3.在树莓派中运行树莓派与openmv通信测试-树莓派程序.py; 4.在Openmv模块中运行树莓派与openmv通信测试-openmv程序.py。 5.在openmv的IDE程序中看到数组则通信成功!
2025-06-01 02:48:34 2KB Python程序
1
该项目是关于一款智能小车的设计,它利用STM32微控制器和OpenMV摄像头模块来实现对交通信号灯的自动识别并执行相应的停车操作。这样的设计在自动机器人和无人驾驶领域具有广泛应用前景,尤其对于学习和研究嵌入式系统、图像处理以及物联网技术的学生和工程师来说,这是一个非常有价值的实践项目。 STM32是意法半导体推出的基于ARM Cortex-M内核的微控制器系列,具有高性能、低功耗的特点。STM32芯片内部集成了丰富的外设接口,如ADC(模拟数字转换器)、SPI、I2C、UART等,适合于复杂的控制系统。在这个项目中,STM32作为核心处理器,负责接收和处理OpenMV摄像头的数据,同时控制小车的电机和其他电子元件,实现智能化的行驶和停车功能。 OpenMV是一个开源的微型机器视觉库,它允许用户在微控制器上进行实时的图像处理。OpenMV模块通常包含一个摄像头传感器和一个处理单元,可以快速地捕获图像并执行简单的图像算法,如颜色检测、形状识别等。在本项目中,OpenMV摄像头用于捕捉交通灯的颜色,通过分析图像数据来判断红绿灯状态。 交通灯识别是智能小车的关键功能。OpenMV可以通过颜色识别算法来区分红色、绿色和黄色灯。例如,它可以设置阈值来识别红色和绿色像素,当检测到红色像素比例超过预定阈值时,认为是红灯,小车应停止;反之,绿色像素占比高则视为绿灯,小车可以继续行驶。此外,黄灯识别可能需要更复杂的逻辑,因为黄灯时间短暂,小车需要根据距离和速度作出决策。 项目实施中,开发人员可能需要编写STM32和OpenMV的固件代码,包括初始化硬件、设置通信协议、实现图像处理算法和控制逻辑等。这些代码可能涉及到C或C++语言,使用Keil、STM32CubeIDE等开发环境。同时,可能还需要使用一些物联网协议(如MQTT)将小车的状态信息上传至云端服务器,以便远程监控和数据分析。 此外,硬件设计也是关键部分,包括电路设计、PCB布局以及小车结构设计。电路设计需要连接STM32、OpenMV模块、电机驱动器、电源等组件,确保它们稳定工作。PCB布局需要考虑电磁兼容性和散热,而小车结构设计则要考虑其稳定性、运动性能以及摄像头的视角。 总结来说,这个"智能车-基于STM32+OpenMV的可以实现识别灯自动停车的智能小车"项目涵盖了嵌入式系统、机器视觉、物联网以及工程设计等多个领域的知识。通过此项目,学习者不仅可以提升编程技能,还能掌握实际的硬件设计和调试能力,为未来在智能交通、自动驾驶等领域的发展打下坚实基础。
2025-05-29 12:11:47 53MB STM32 OpenMV 优质项目
1
视觉拾取和放置 带有uArm Swift Pro和OpenMV的视觉系统 硬件准备 * 1 * 1 * 1 其他几个部分 软件准备 Vision.ino是MEGA2560的arduino文件 color_tracking_test.py是基于OpenMV IDE的OpenMV代码 uArm固件应由您自己上传: 1.在下载XLoader 2.在下面设置参数 Hex file: uArm Firmware.hex Device: Mega(ATMEGA2560) COM port: depending on your system Baud rate: 115200 3.单击上载完成闪烁
2025-05-14 09:19:57 210KB
1
此文件是OpenMV安装包,配有相关安装教程
2025-04-14 16:09:44 121.58MB OpenMV 安装教程 视觉处理
1
智能送药小车是我在备战2023年电赛时做的训练题。通过研究,我发现网上大多数方案将巡线与数字识别分开实现。然而,我的想法是将这两者结合在一个OpenMV系统中,来模拟在比赛期间缺少了灰度传感器(因为巡线是循红线)的解决方案。(我是使用STC32作为小车的主控来控制其电机的运动,通信就是STC32和openmv的,实际上将串口接收和发送处理好所有单片机都可以使用这个方案)
2025-04-13 15:50:08 254KB 网络 网络
1
这时作者自己在24年电赛e题时使用的原版代码,里面的注释已经比较详细了,基本可以完美的滤波和识别。因为硬件之间的差异,我的硬件openmv在识别时有很大的噪音,为了去除噪音,我使用的各种滤波和识别的方法进行结合,使得硬件和环境在比较恶劣的情况下也可进行识别。
2024-08-20 12:09:39 24KB python openmv
1
由于小编没有电赛器材,所以就以STM32为主控,OpenMV摄像头巡线的方案进行演示2024电赛H题(视频演示请查看:https://blog.csdn.net/qq_67319052/article/details/140763678)。但控制方案、巡线原理都一样,都是通过控制黑线与中心线的偏差关系,只是电赛官方要求,不准用摄像头,但用灰度传感器也一样。通过灰度传感来获取偏差,灰度优点是点位准确,只是数据相对摄像头获取的较为离散,但用来控制,也完全足够了。 该方案基本可行,速度稳定且并未到达该车上限,需要进一步的优化控制逻辑,这里使用的是统一速度行驶,可采取变速行使,可进一步提高稳定性和减少整体耗时。其中使用的MPU6050存在零漂等,准确度不好,如能用算法解决,稳定性可进一步提高,其次该车的初始摆放位置较为重要, 初始角度为后续转向的参考。若采用四轮小车,只需将左边两轮和右边两轮进行分别同步即可,可能还需要微调参数。 控制的难点就在与ABCD四点之间的丝滑连接,如何让小车又快又稳的运行,最后比拼的就是时间了。
2024-07-31 15:02:57 27.45MB 巡线小车
1
大一暑假制作的一个循迹小车,使用STM32CUBEMX配置引脚和串口,定时器中断等,通过OPENMV获取色块坐标,通过串口通信将数据传给STM32,STM32将数据进行解析,获取色块坐标,小车使用的是阿克曼结构,转向通过舵机实现,后轮速度使用PID控制保持恒定,色块坐标和舵机转向不是线性对应,也采用PID控制,使用并行PID达到小车速度恒定,转向丝滑,PID每10ms执行一次
2024-07-16 16:14:42 4.94MB stm32 HAL库 OPENMV 循迹小车
1