三维N $$ \ mathcal {N} $$ = 4个超对称量子场论接受了两种拓扑扭曲,即Rozansky-Witten扭曲及其镜像。 可以使用任何一种扭曲来定义Riemann表面上的超对称压缩和超对称基态的相应空间。 这些基态空间可以在“几何朗兰兹”程序中扮演有趣的角色。 我们建议将这些空间描述为某些非单一顶点算子代数的共形块,并在一些重要示例中测试我们的猜想。 这两个VOA可以分别根据N $$ \ mathcal {N} $$ = 4理论或其镜像的UV拉格朗日描述来构造。 我们进一步推测,与N $$ \ mathcal {N} $$ = 4 SQFT相关的VOA继承了仅在IR中出现的理论属性,例如增强的全局对称性。 因此,VOA的知识应该允许人们为IR SCFT的整个对称组的超对称背景连接耦合的理论计算超对称基态的空间。 特别是,我们为T [SU(N)]理论提出了基态空间的共形场论描述。 这些理论在最大超对称SU(N)规范理论中扮演S-对偶核的角色,因此,超对称基态的相应空间应为特殊unit群的几何Langlands对偶性提供一个核。
2024-03-02 20:28:25 527KB Open Access
1
我们基于S 2×S 2构造一个超几何,可以在其中保留所有超对称的同时,将超对称放置四个维度N $$ \ mathcal {N} $$ = 2规范的理论。 通过将超几何嵌入四维N $$ \ mathcal {N} $$ = 2超引力中,我们能够在S 2×S 2上构造任意N $$ \ mathcal {N} $$ = 2规范理论。 我们证明了N $$ \ mathcal {N} $$ = 2规范理论在例外超代数D(2,1,α)下是不变的,其中α是两个S 2的半径之比。 我们为D(2,1,α)中的增压选择求解超对称不动点方程。 我们发现,这些BPS方程的解可以用作S 2×S 2上N $$ \ mathcal {N} $$ = 2规范理论的分区函数的定位计算的精确鞍点配置。
2024-03-02 20:26:53 267KB Open Access
1
具有整体对称性的共形理论可以在双标度体系中研究,其中相互作用强度降低而整体电荷增加。 在这里,我们研究了一般的4d N $$ \ mathcal {N} $$ = 2 SU(N)规范理论,该模型在大R电荷QR→∞时具有保形物质含量,并且具有固定的't霍夫特式耦合κ= QR g YM 2 。 $$ \ kappa = {Q} _ {\ mathrm {R}} {g} _ {\ mathrm {YM}} ^ 2。 $$我们的分析涉及两类自然缩放函数。 第一种是根据手性/反手性两点功能构建的。 第二个涉及在存在1 2 $$ \ frac {1} {2} $$ -BPS Wilson-Maldacena循环的情况下手性算子的单点函数。 在秩为1 SU(2)的情况下,最近已显示两点扇区被辅助手性随机矩阵模型捕获。 我们将分析扩展到SU(N)理论,并提供一种算法,该算法可为所有考虑的模型计算任意长的扰动展开,该模型在等级中是参数化的。 通过N $$ \ mathcal {N} $$ = 1个超空间中的三循环计算来交叉检查领先和次要的贡献。 这种微扰分析将最大非平面费恩曼图确定为双比例缩放极限
2024-03-02 20:24:11 983KB Open Access
1
我们讨论3d N $$ \ mathcal {N} $$ = 1超对称SU(N)和U(N)Chern-Simons物质理论,在SU(N)或U(N )。 在固定的Hooft耦合λ的较大的N't Hooft极限中,这些理论在超势中具有一个(对于N f = 1)或两个(对于N f> 1)正好是边际变形。 在有限的N下,这些耦合获得一个beta函数。 我们精确地计算λ= 0时的beta函数,其前导顺序为1 / N。 对于N f = 1,我们找到四个固定点,其中之一是三次简并的。 我们证明,在N大的情况下,任何λ最多有六个固定点,并且猜想正好有六个固定点,其中三个稳定(包括一个具有增强的N $$ \ mathcal {N} $$ = 2超对称性的点) 。 N $$ \ mathcal {N} $$ = 1 Chern-Simons-matter理论的强弱耦合对偶将这些固定点中的每一个映射为对偶点。 我们表明,在大的N下,三个稳定的固定点附近的相结构是不同的。 对于N f> 1,我们分析了弱耦合处的不动点,并研究了强弱耦合对偶性对大N时的边际和相关超电势耦合的作用(以前仅在N f = 1时才
2024-03-02 20:19:28 1.7MB Open Access
1
我们探索S 1×Σ上3d N $$ \ mathcal {N} $$ = 4规范理论的扭曲指数的几何解释,其中Σ是闭合的黎曼曲面。 我们专注于丰富的超对称颤动量规理论,这些理论在一般质量和FI参数变形下隔离了真空。 我们表明,路径积分位于Σ上广义涡旋方程解的模空间,可以代数理解为到希格斯分支的准映射。 我们表明扭曲索引再现了扭曲准映射模空间的虚拟欧拉特征,并证明这与先前工作中引入的轮廓积分表示相符。 最后,我们在这种情况下研究了3d N $$ \ mathcal {N} $$ = 4个镜像对称性,这意味着在等变量和度数参数交换下,与希格斯分支的镜像对相关的枚举不变量相等。
2024-03-02 20:17:14 919KB Open Access
1
我们研究具有N S个脊柱物质和N f个矢量物质的三维N $$ \ mathcal {N} $$ = 2 Spin(7)规范理论。 真空模量空间上的量子库仑分支取决于物质的含量为一维或二维。 对于(N f,N S)的特定值,我们找到s约束阶段并导出精确的超势。 Spin(7)的3d动力学通过KK单极子连接到4d动力学。 沿着Spin(7)理论的希格斯分支,我们获得3d N $$ \ mathcal {N} $$ = 2 G 2或SU(4)理论,其中一些导致新的s约束阶段。 作为对我们分析的检验,我们为这些理论计算了超保形指数。
2024-03-02 20:14:47 496KB Open Access
1
我们考虑在Calabi-Yau上三倍N = 1 $$ \ mathcal {N} = 1 $$ M理论的紧致化,以及从11个维数减少获得的有效光模式的3d理论。 我们详细研究了真空下的质谱,并通过解耦大量多重峰,得出了直到四次费米子项为止的有效3d N = 1 $$ \ mathcal {N} = 1 $$理论。 我们证明,通常它是3d超对称所期望的形式的N = 1 $$ \ mathcal {N} = 1 $$超重力。 特别是无质量的玻色子场由体积模量和源自十一维三态的轴构成,而模空间度量与双曲空间局部等距。 根据F理论有效行动方法,我们考虑3d N = 1 $$ \ mathcal {N} = 1 $$ M理论真空的F理论解释。 我们表明,这些真空通常具有带有圆通量的F理论对偶,从而打破了4d庞加莱不变性。
2024-03-02 20:07:47 838KB Open Access
1
非常好的统计学习理论,希望对大家有所帮助,共同进步!
2024-03-02 13:39:22 9.37MB 统计学习
1
我们研究与使用6d N = 2,0 $$ \ mathcal {N} = \ left(2,\ 0 \ right)$$理论设计的Argyres-Douglas(AD)理论相对应的顶点算子代数(VOA)的各个方面。 穿刺球体上的J型。 我们将AD理论表示为(J b [k],Y),其中J b [k]和Y分别表示不规则和规则奇点。 我们限于J b [k]没有关联的质量参数的“最小”情况,并且该理论不接受任何精确的边际变形。 推测与AD理论相对应的VOA为W-代数W k 2 d J,Y $$ {\ mathcal {W}} ^ {k_ {2d}} \ left(J,\ Y \ \ right)$ $,其中k 2 d = − h + bb + k $$ {k} _ {2d} =-h + \ frac {b} {b + k} $$,其中h是J的双Coxeter数。 我们通过证明AD理论的Schur指数与相应的VOA的真空特性相同来验证这一推测,并且Hall-Littlewood指数计算希格斯分支的希尔伯特级数。 我们还发现,对于b = h,可以将AD理论的Schur和Hall-Littlewo
2024-03-02 08:58:18 631KB Open Access
1
我们研究多体扰动理论(MBPT)的按序收敛行为,作为一种简单有效的工具来近似闭壳核的基态能量。 为了直接解决收敛性,我们探索了高达30阶的扰动校正,并强调了分区对收敛的作用。 与以谐波振荡器为基础的发散MBPT系列相反,在不受干扰的基础上使用简单的Hartree-Fock解决方案可导致收敛的MBPT系列用于软相互作用。 对于较大的模型空间和较重的原子核,无法直接进行高阶MBPT计算,我们将执行三阶计算,并与相同的相互作用和模型空间的高级从头算起耦合簇结果进行比较。 我们证明了三阶MBPT能够以最低的计算成本,以与最佳可用耦合簇计算极好的一致性,为进入锡同位素链的原子核提供基态能量。
2024-03-02 08:17:47 475KB Open Access
1