Doc2Vec文本分类 文本分类模型,该模型使用gensim Doc2Vec生成段落嵌入,并使用scikit-learn Logistic回归进行分类。 数据集 25,000个IMDB电影评论,特别选择用于情感分析。 评论的情绪是二进制的(1表示肯定,0表示否定)。 与以下出版物相关联地收集了此源数据集: Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). "Learning Word Vectors for Sentiment An
1
细粒度情感分类 此仓库显示了对各种NLP方法的比较和讨论,这些方法可以在(SST-5)数据集上执行5级情感分类。 目标是使用多个基于规则,基于线性和神经网络的分类器来预测此数据集上的类,并查看它们之间的区别。 当前已实现以下分类器: TextBlob :基于规则,使用库中的内部polarity度量。 Vader :基于规则,使用库中的compound极性分数。 Logistic回归:在将词汇表转换为特征向量并考虑使用TF-IDF的词频影响后,在scikit-learn中训练简单的logistic回归模型。 SVM :在将词汇表转换为特征向量并使用TF-IDF考虑词频的影响后,在sci
2021-08-19 22:24:07 1.55MB nlp sentiment-analysis transformers flair
1
使用Amazon评论进行情感分析 概述 使用Jure Leskovec在18年中收集集,我们创建了一个情感字典,其中包含97,436个唯一单词,它们对应于零中心浮点情感得分。 过程 我们首先对语料库中的数据进行预处理,以删除多余的信息。 我们仅使用评论文本和每个评论的星级评分。 经过预处理后,我们使用MapReduce计算每个星级(从1到5)中每个单词的频率。获得每个单词的频率后,我们编写了一种情感算法来计算每个单词的情感分数。 结果 正面的话 单词 情感分数 好的 0.152603809091 伟大的 3.78021467713 惊人的 6.8840020218 惊人 6.54080771437 完美的 5.78771983374 非同凡响 5.72747983897 精彩的 6.05087919002 最好的 3.2653374328 否定词 单词 情感分数 坏的 -5.
2021-08-18 00:25:22 1.21MB Python
1
ABSA-PyTorch 基于方面的情感分析,PyTorch实现。 基于方面的情感分析,使用PyTorch实现。 需求 火炬> = 0.4.0 numpy的> = 1.13.3 斯克莱恩 python 3.6 / 3.7 变形金刚 要安装需求,请运行pip install -r requirements.txt 。 对于非基于BERT的模型,需要,请参阅了解更多详细信息。 用法 训练 python train.py --model_name bert_spc --dataset restaurant 所有实现的模型都列在。 有关更多训练参数,请参见 。 请参阅以获取k倍交叉验证支持。 推理 有关基于非BERT的模型和基于BERT的模型,请参考 。 提示 对于非基于BERT的模型,训练过程不是很稳定。 基于BERT的模型对小数据集上的超参数(尤其是学习率)更敏感,请参阅。 为了释放BERT的真正功能,必须对特定任务进行微调。 评论/调查 邱锡鹏等。 “自然语言处理的预训练模型:调查。” arXiv预印本arXiv:2003.08271(2020)。 张磊,王帅和刘
1
一共是4000条唐诗文本数据,进行了二分类情感标注,1表示积极情感,0表示消极情感。每一条唐诗数据是两句诗,个人感觉两句相对才能表达出稍微完整的情感倾向。
2021-07-18 14:15:09 171KB sentiment_data Chinese poetry nlp
1
情感分析 udacity-submission-sagemaker
2021-07-17 18:00:44 106KB HTML
1
HarvestText Sow with little data seed, harvest much from a text field. 播撒几多种子词,收获万千领域实 在和上同步。如果在Github上浏览/下载速度慢的话可以转到上操作。 用途 HarvestText是一个专注无(弱)监督方法,能够整合领域知识(如类型,别名)对特定领域文本进行简单高效地处理和分析的库。适用于许多文本预处理和初步探索性分析任务,在小说分析,网络文本,专业文献等领域都有潜在应用价值。 使用案例: (实体分词,文本摘要,关系网络等) (实体分词,情感分析,新词发现[辅助绰号识别]等) 相关文章: 【注:本库仅完成实体分词和情感分析,可视化使用matplotlib】 (命名实体识别,依存句法分析,简易问答系统) 本README包含各个功能的典型例子,部分函数的详细用法可在文档中找到: 具体功能如下: 基本处理
1
Multimodal Sentiment Analysis (Socio-Affective Computing, Book 8) by Soujanya Poria and Amir Hussain This latest volume in the series, Socio-Affective Computing, presents a set of novel approaches to analyze opinionated videos and to extract sentiments and emotions.
2021-06-16 20:59:28 3.17MB 分析
1
词嵌入的情感分析 介绍 张量流中CNN和长期短期记忆方法的情感分析。 数据集 大电影eview数据集(有时称为IMDB数据集)中的电影评论。 在此任务中,给定电影评论,模型会尝试预测它是正面的还是负面的。 这是一个二进制分类任务。 下载资料 cd数据方向并运行以下命令。 tar -xvzf negativeReviews.tar.gz tar -xvzf positiveReviews.tar.gz 如何使用 train.py训练文件。 code_test.py测试文件。 test_one_review.py判断一项评论的情绪是积极的还是消极的。 其中npy文件: ://pan.baidu.com/s/1NgaZrA-XyA7HKHDdowHFDw提取码:n5ya
2021-05-28 18:32:15 24.98MB 附件源码 文章源码
1