内容概要:本文围绕2025年第十一届全国大学生统计建模大赛“统计创新应用 数据引领未来”的主题,探讨多领域数据分析与模型构建的具体思路。文章从金融风险预警、智慧城市交通、公共卫生疫情防控、环境监测治理以及跨学科融合五个方面详细介绍各选题的研究框架、数据来源、方法论及创新点,强调在确保统计理论严谨性的基础上,融合大数据、机器学习、人工智能等新技术,为参赛队提供系统性、操作性强的选题指导与思路参考,旨在为未来数据驱动决策和社会治理提供有效支持。 适合人群:准备参加全国大学生统计建模大赛的学生团队,特别是对统计学、数据科学及相关应用领域感兴趣的学生。 使用场景及目标:①帮助参赛队伍理解如何在各个领域中应用统计学与新兴技术;②指导参赛队伍在确保数据真实性和模型严谨性的前提下,设计具有创新性和实际应用价值的建模方案;③为参赛队伍提供详细的选题方向和研究框架,助力他们在比赛中取得优异成绩。 阅读建议:本文不仅提供了丰富的理论背景和选题指导,还强调了实际应用的重要性。因此,在阅读过程中,参赛队伍应重点关注如何将理论与实践相结合,同时注意遵守大赛的各项规定,确保论文的学术性和规范性。此外,对于文中提到的创新点和技术细节,参赛队伍可以通过查阅更多相关文献来加深理解并应用于自己的项目中。
2025-04-11 10:28:54 16KB 统计建模 大数据分析 机器学习
1
"Maxwell与Simplorer、SIMULINK的联合仿真实践:构建场路耦合模型,提升电机动态性能的研究资料","Maxwell-Simplorer-SIMULINK联合仿真技术:本体有限元模型与SVPWM策略下的Id=0双闭环控制研究",Maxwell联合,Simplorer,SIMULINK联合仿真。 Maxwell 中建立本体有限元模型,Simplorer中搭建的SVPWM策略下Id=0双闭环控制外电路模型。 可成功实现场路耦合联合仿真,也成自己的电机模型研究动态性能。 包含:多种仿真模型文件(很多,可以用于学习比较)电子资料,出概不 有相关文档支持。 ,核心关键词:Maxwell联合仿真; Simplorer; SIMULINK联合仿真; 有限元模型; SVPWM策略; 双闭环控制; 场路耦合联合仿真; 仿真模型文件; 电子资料; 相关文档。,Maxwell-Simplorer-SIMULINK联合仿真资料包
2025-04-08 16:59:58 375KB kind
1
银河麒麟服务器V10SP1-2403+Dify+Deepseek(本地&在线) 本地构建知识库(保姆级)(无需翻墙)-物料
2025-04-02 16:29:34 423.03MB
1
知识图谱基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip 基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip基于neo4j的汽车知识图谱,使用flask构建系统,Echarts可视化.zip
2025-04-02 15:56:18 3.97MB flask 知识图谱 echarts
1
内容概要:本文围绕程序设计与医疗领域构建知识图谱进行探讨,旨在将离散的程序设计知识和医学知识通过知识图谱的形式有机整合。具体做法是对程序设计知识和医疗数据进行分析,运用知识图谱构建技术形成结构化的网络,实现快速检索与推理。同时,介绍了利用Python语言、Streamlit前端技术和Neo4j图数据库打造一个医疗问答系统,为医生及病人提供了便捷的知识检索工具,提高了信息利用率和决策质量。 适合人群:本文适合关注知识管理、信息检索、自然语言处理、以及对程序设计和医疗知识有兴趣的研发人员和技术爱好者。 使用场景及目标:①适用于程序设计教育和代码辅助开发场景,旨在提高教学质量及开发者效率;②在医疗场景中,帮助医生和患者更快速地获得准确的信息,减轻误诊漏诊现象,同时辅助教学,普及医疗常识。 其他说明:通过对自然语言处理技术和知识图谱的深度融合,本项目为解决大数据环境下信息爆炸与高效利用之间的矛盾提供了创新思路,并强调未来将继续探索优化知识图谱动态更新机制和个人化推荐机制的可能性。
2025-04-01 19:43:20 1.35MB 知识图谱 自然语言处理
1
《基于Transformer模型构建的聊天机器人-Catalina》 在当今的AI领域,自然语言处理(NLP)技术的发展日新月异,其中Transformer模型的出现无疑是里程碑式的重要突破。Transformer模型由Google在2017年提出,它以其并行化处理能力、高效的注意力机制以及在多个NLP任务上的出色性能,迅速成为了研究者和工程师的首选工具。本项目“基于Transformer模型构建的聊天机器人-Catalina”正是利用这一先进模型,旨在打造一个能够理解并回应人类自然语言的智能对话系统。 Transformer模型的核心在于自注意力(Self-Attention)机制,它打破了传统RNN(循环神经网络)和CNN(卷积神经网络)在序列处理上的限制。自注意力允许模型同时考虑输入序列中的所有元素,而非仅依赖于上下文的局部依赖,这使得模型能够捕捉更复杂的语义关系。此外,Transformer模型还引入了多头注意力(Multi-Head Attention),通过并行计算多个不同注意力权重的子空间,进一步增强了模型对不同信息层次的捕获能力。 在聊天机器人的构建过程中,Transformer模型通常被用作语言模型,负责理解和生成文本。需要对大量的对话数据进行预处理,包括分词、去除停用词、词嵌入等步骤,将文本转化为模型可以处理的形式。然后,使用Transformer进行训练,学习数据中的语言规律。训练后的模型可以根据输入的用户话语,通过自回归方式生成回应,实现与用户的自然对话。 Catalina聊天机器人项目的实现可能包含以下几个关键模块: 1. 输入处理:接收并解析用户的输入,将其转化为模型可以理解的格式。 2. 模型前向传播:使用预训练的Transformer模型进行推理,生成候选回应。 3. 回应选择:根据生成的多条候选回应,结合语境和概率选择最合适的回复。 4. 输出处理:将模型生成的回应转化为人类可读的文本,并呈现给用户。 5. 持续学习:通过对用户反馈和对话历史的学习,持续优化模型的对话能力。 值得注意的是,Transformer模型虽然强大,但训练过程可能需要大量的计算资源和时间。为了减轻这一问题,可以采用预训练模型如GPT或BERT作为基础,再进行微调以适应特定的聊天机器人任务。 总结来说,“基于Transformer模型构建的聊天机器人-Catalina”项目利用了Transformer模型的先进特性,通过深度学习的方式实现了一个能理解并生成自然语言的智能对话系统。这个系统不仅可以提供个性化的交互体验,还能随着与用户互动的增加不断学习和改进,展示了人工智能在聊天机器人领域的巨大潜力。
2025-04-01 13:05:56 28.37MB 人工智能 Transformer
1
基于模型预测控制的储能双向DCDC变换器仿真研究:模型构建、功能实现与结果分析,基于模型预测控制的储能双向DCDC变换器仿真研究:仿真模型、实现与结果展示,模型预测控制MPC的储能双向DCDC变器 仿真展示为储能双向DCDC变器,采用模型预测电流控制。 仿真模型包括:蓄电池模型、双向DCDC变器主电路、下垂控制、模型预测电流控制(fcn代码实现)。 结果如图所示,跟踪期望能力强,功能实现完整。 文件包括: [1]仿真模型 [2]相关参考文献。 ,模型预测控制MPC;储能双向DCDC变换器;仿真展示;蓄电池模型;主电路;下垂控制;fcn代码实现;跟踪期望能力强;功能实现完整;相关参考文献。,模型预测控制MPC在储能双向DCDC变换器中的应用及仿真研究
2025-03-29 13:10:15 2.05MB css3
1
内容概要:本文档全面介绍了构建基于Web的在线教育平台的全过程,涵盖选题背景、开题答辩要点、项目源码及论文撰写的指导。主要内容包括系统架构设计、功能模块实现、数据库设计、前后端开发等方面。具体功能实现覆盖了用户注册登录、课程浏览与购买、在线学习、互动问答、考试测评等。技术栈采用前后端分离模式,前端使用React框架,后端使用Spring Boot框架,数据库采用MySQL。 适合人群:适合软件工程专业本科生作为毕业设计项目参考,特别是对Web开发和在线教育平台感兴趣的学生。 使用场景及目标:帮助学生从零开始构建一个完整的在线教育平台,掌握Web开发的关键技术和实践技巧,增强项目实战能力,为未来的职业生涯打下坚实基础。 其他说明:文档还包括项目答辩的准备指南,如PPT制作、代码演示、常见问题解答等,有助于学生顺利完成答辩环节。
2025-03-28 21:38:24 30KB React Spring Boot MySQL
1
文件名:Whiskey Structure Builder v1.1.6.unitypackage Whiskey Structure Builder 是一款 Unity 插件,专为快速构建建筑物和复杂结构而设计。它为开发者提供了一套灵活且直观的工具,能够在 Unity 编辑器内直接创建、修改和管理建筑元素,从而大大加快场景搭建的速度。以下是对 Whiskey Structure Builder 的详细介绍: 概述 Whiskey Structure Builder 旨在通过模块化建模系统和可视化编辑工具,帮助开发者在 Unity 中快速搭建复杂的建筑和场景结构。无论是城市、室内建筑还是其他环境结构,这款插件都能提供极大的便利和灵活性。 主要功能 模块化建筑工具:Whiskey Structure Builder 提供了一套模块化的建筑工具,允许开发者通过拖放不同的建筑块、墙壁、楼梯、屋顶等元素快速构建复杂的建筑物。 可视化编辑:通过直观的界面和可视化编辑功能,用户可以直接在 Unity 场景中实时调整建筑元素的位置、旋转、缩放等属性,极大地提升了设计效率。 .....
2024-12-09 01:48:03 679.24MB Unity插件
1
nps-browser-release-21(作者IllusionMan,由Croden1999构建).apk
2024-11-20 11:45:52 5.18MB
1