机器学习 深度学习 pytorch tensorflow 贝叶斯 神经网络 算法
2021-11-30 13:01:25 8.06MB 机器学习 深度学习 tensorflow pytorch
传统的无监督领域自适应算法在对齐总体分布时存在分类信息流失问题,难以保证迁移学习效果。针对这个问题,提出了一种基于类内最大均值差异的分布对齐策略。该策略首先预测所有样本的伪标签,然后借助伪标签样本信息依次对齐每个类别的领域类内分布。在深度学习框架下,所提算法能够有效保留分类信息,提高了目标领域的预测能力。实验结果表明,与传统算法比较,所提算法在多个基准数据集上获得了最优的迁移学习效果。
2021-11-29 22:05:02 1.28MB 领域自适应 无监督学习 神经网络
1
k8s 学习指路 未完待续~~
2021-11-26 15:20:59 2.12MB 无监督学习
1
Keras梯形网络的半监督学习 这是Keras中Ladder Network的实现。 阶梯网络是半监督学习的模型。 请参阅A Rasmus,H Valpola,M Honkala,M Berglund和T Raiko题为“进行”的论文。 此实现已在我们的论文《的正式代码中。 该代码可以发现和博客文章,可以发现 仅使用100个带标签的示例,该模型即可在MNIST上实现98%的测试准确性。 该代码仅适用于Tensorflow后端。 要求 Python 2.7 + / 3.6 + Tensorflow(1.4.0) 麻木 keras(2.1.4) 请注意,其他版本的tensorflow / keras也应该起作用。 如何使用 加载数据集 from keras . datasets import mnist import keras import random # get the da
2021-11-25 15:46:13 5KB Python
1
2019-Recursive cascaded networks for unsupervised medical image registration-ICCV文献精读
2021-11-23 11:34:38 1.53MB 图像配准 无监督学习 python tensorflow
1
20页综述,共计171篇参考文献。对于有监督学习方法,本文从三个方面介绍:backbone选择,网络blocks的设计以及损失函数的改进;对于弱监督学习方法,本文从数据增广,迁移学习和交互式分割来介绍。
1
WTS WTS:使用分割模型对遥感土地覆盖分类的弱监督学习框架 介绍 这是WTS监督学习框架用于使用分割模型进行遥感土地覆盖分类的实现,其中SRG算法指的是 。 引用该存储库 如果您发现此代码对您的研究有用,请考虑将其引用: @article{wts, title={WTS: A weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models}, author={Wei Zhang, Ping Tang, Thomas Corpetti and Lijun Zhao}, booktitle={Remote Sensing}, pages={},
2021-11-22 20:06:08 8.55MB Python
1
自我监督的拼图游戏 TensorFlow和Keras中“解决拼图难题的无监督学习视觉表示”的论文实施
2021-11-16 11:24:45 808KB Python
1
快速搜索和寻找密度峰值的聚类(clustering by fast search and find of density peaks),简称密度峰值聚类(density peaks clustering,DPC)算法,该算法的优点为:不需要事先指定类簇数;能够发现非球形类簇;只有一个参数需要预先取值。
2021-11-15 20:06:03 7KB 聚类算法 无监督学习 DPC
无监督异常检测论文集,可用于未来智能工厂预测性分析。
2021-11-14 23:20:30 37.84MB 无监督学习 异常检测
1