opencv_torchvision_transform 这是基于Opencv的torchvision“ transforms”的重写。 所有功能仅取决于cv2和pytorch(无PIL)。 如,cv2比PIL快三倍。 转换中的大多数函数都被重新实现,除了: 在原始版本中已弃用的ToPILImage(我们使用过的opencv :)),Scale和RandomSizedCrop将被忽略。 原始的仿射变换只有5个自由度,我实现了一个具有6个自由度的仿射变换,称为RandomAffine6 (可以在找到)。 原始方法RandomAffine仍然保留,并使用opencv重新实现。 我的旋转功能是顺时针旋转,但是原始功能是逆时针旋转。 添加了一些新的方法,这些方法可以在“支持”中找到(粗体显示)。 opencv版本的所有输出与原始输出几乎相同(在测试) 。 支持: Compose
2024-02-02 17:57:27 99KB opencv pillow pytorch torchvision
1
机器学习实验1:朝阳医院2018年销售数据 数据集描述:该数据集包含了朝阳医院2018年的销售数据,包括日期、科室、医生、药品名称、销售量等信息。 数据集格式:Excel文件(.xlsx) 机器学习实验2:adult数据集 数据集描述:该数据集是UCI机器学习库中的"Adult"数据集,包含了48,842个样本,每个样本有15个特征和一个标签。该数据集用于解决二分类问题,即判断一个人是否年收入超过50K美元。 训练数据文件名:adult.txt 测试数据文件名:adult.test 机器学习实验3:自定义数据集 数据集描述:该数据集可以根据实际需求自行分配,可以包含任何类型的数据和标签。 数据集路径:./data 在实验3中,你可以根据具体任务的需求,选择合适的数据集进行训练和测试。例如,如果你的任务是图像分类,可以选择一个包含图像文件和对应标签的文件夹作为数据集;如果你的任务是文本分类,可以选择一个包含文本文件和对应标签的文件夹作为数据集。
2024-02-02 09:14:15 23.3MB 机器学习 数据集 pytorch anaconda
1
内容概要:通过数据集电力变压器油温数据详细的介绍双向LSTM,以及其机制,运行原理,以及如何横向搭配单向的LSTM进行回归问题的解决。 所需数据:在本次的模型所需的数据是电力变压器油温数据,由国家电网提供,该数据集是来自中国同一个省的两个不同县的变压器数据,时间跨度为2年,原始数据每分钟记录一次(用 m 标记),每个数据集包含2年 * 365天 * 24小时 * 60分钟 = 1,051,200数据点。 每个数据点均包含8维特征,包括数据点记录日期,预测目标值OT(oil temperature)和6个不同类型功率负载特征。 适合人群:时间序列和深度学习初学者本文的模型比较简单,易于理解。 阅读建议:可以大致阅读以下,本文件只是一个简单实现版本,并不复杂。 能学到什么:能够从本文件当中读懂深度学习的代码实现过程,对于时间序列有一个简单的了解, (PS:如果你使用你自己的数据进行预测需要将时间列和官方数据集保持一致,因为在数据处理部分我添加了一部分特征工程操作,提取了一些时间信息,因为LSTM不支持时间格式的数据输入,需要转化为数字) 如果大家不懂的地方可以看我的文章部分有详细的讲解。
2024-01-31 13:39:26 441KB lstm python pytorch 深度学习
1
matlab交叉验证代码PyTorch DGCNN 关于 DGCNN(深图卷积神经网络)的PyTorch实现。 检查更多信息。 要求:python 2.7或python 3.6; 火炬> = 0.4.0 安装 此实现基于戴汉俊的structure2vec图后端。 在“ lib /”目录下,键入 make -j4 编译必要的c ++文件。 之后,在此存储库的根目录下,键入 ./run_DGCNN.sh 使用默认设置在数据集MUTAG上运行DGCNN。 或输入 ./run_DGCNN.sh DATANAME FOLD 在数据集= DATANAME上运行,使用倍数= FOLD(1-10,对应于在交叉验证实验中用作测试数据的倍数)。 如果将FOLD设置为0,例如键入“ ./run_DGCNN.sh DD 0”,则它将在DD上运行10倍交叉验证,并报告平均准确度。 或者,键入 ./run_DGCNN.sh DATANAME 1 200 将数据集中的最后200张图用作测试图。 折数1将被忽略。 检查“ run_DGCNN.sh”以获取更多选项。 数据集 默认图形数据集存储在“ data / DSN
2024-01-26 18:33:28 35.06MB 系统开源
1
用pytorch实现ssd并在自己的数据集上进行行人检测
2024-01-24 14:36:14 107KB pytorch ssd
1
生成绘画火炬 根据作者的,对PyTorch重新。 先决条件 该代码已经在Ubuntu 14.04上进行了测试,以下是需要安装的主要组件: Python3 PyTorch 1.0+ 火炬视觉0.2.0+ 张量板 pyyaml 训练模型 python train.py --config configs/config.yaml 检查点和日志将保存到checkpoints 。 用训练好的模型进行测试 默认情况下,它将在检查点中加载最新保存的模型。 您也可以使用--iter通过迭代选择保存的模型。 训练有素的PyTorch模型:[ ] [] python test_single.py \ --image examples/imagenet/imagenet_patches_ILSVRC2012_val_00008210_input.png \ --mask examples/cen
1
舌苔数据集,两千多张图片,512x512通道,包含原图和labelme打好的标签
2024-01-22 16:30:28 206.13MB 数据集 python pytorch tensorflow
1
基于Pytorch实现GRU模型
2024-01-18 16:17:36 321KB pytorch 深度学习
1
本文介绍了使用pytorch2.0进行图像分类的实战案例,包括数据集的准备,卷积神经网络的搭建,训练和测试的过程,以及模型的保存和加载。本案例使用了CIFAR-10数据集,包含10个类别的彩色图像,每个类别有6000张图像,其中5000张用于训练,1000张用于测试。本案例使用了一个简单的卷积神经网络,包含两个卷积层和两个全连接层,使用ReLU激活函数和交叉熵损失函数,使用随机梯度下降优化器。本案例可以在GPU和CPU上运行,根据设备的不同自动切换。本案例适合入门pytorch深度学习和练手,也可以用到项目当中。代码精炼,容易修改进行二次完善和开发。
2024-01-16 14:08:43 325.06MB pytorch 数据集 计算机视觉
1
,机器学习应用程序的广泛部署激发了人们对利用存储在移动设备上的大量数据的兴趣。为了保护数据隐私,联邦学习被提出通过在参与设备上执行本地分布式训练并将本地模型聚合为全局模型来学习共享模型。然而,由于移动设备的网络连接有限,联邦学习在所有参与设备上并行执行模型更新和聚合是不切实际的。此外,跨所有设备的数据样本通常不是独立同分布的(IID),这对联邦学习的收敛性和速度提出了额外的挑战。 在本文中,我们提出了一个经验驱动的控制框架FAVOR,它可以智能地选择客户端设备参与每一轮联邦学习,以抵消非iid数据引入的偏差,并加快收敛速度。通过实证和数学分析,我们观察到设备上训练数据的分布与基于这些数据训练的模型权值之间存在隐式联系,这使我们能够根据该设备上上传的模型权值来描述该设备上的数据分布。然后,我们提出了一种基于深度q学习的机制,该机制学习在每个通信轮中选择一个设备子集,以最大限度地奖励,鼓励提高验证准确性,并惩罚使用更多通信轮。通过在PyTorch中进行的大量实验,我们表明,与联邦平均算法相比,联邦学习所需的通信轮数在MNIST数据集上最多可以减少49%。
2024-01-15 17:58:33 1.13MB pytorch pytorch
1