[Objective] This paper compares the prediction accuracy and efficiency of different machine learning algorithms, aiming to identify new consumers with repeat purchase intentions. It also provides a theoretical framework for customer classification. [Methods] First, we collected the server logs of a dealer on Taobao.com from 2015 to 2018,as well as its orders and consumers’ personal information. And then, we used different algorithms to train theproposedmodels. [Results] The SMOTE algorithm combined with the random forest algorithm obtained the highest prediction accuracy of 96%. [Limitations] The sample data size needs to be expanded. [Conclusions] The fusion algorithm basedon SMOTE and random forest has better performance in predicting repurchase intentions of new consumers.
2022-04-06 20:44:11 467KB Repeat Purchase
1
基于BERT的中文数据集下的命名实体识别(NER) 基于tensorflow官方代码修改。 环境 Tensorflow:1.13 的Python:3.6 tensorflow2.0会报错。 搜狐比赛 在搜狐这个文本比赛中写了一个基准,使用了bert以及bert + lstm + crf来进行实体识别。 其后只使用BERT的结果如下,具体评估方案请看比赛说明,这里的话只做了实体部分,情感全部为POS进行的测试嘲笑。 使用bert + lstm + crf结果如下 训练验证测试 export BERT_BASE_DIR=/opt/hanyaopeng/souhu/data/chinese_L-
2022-03-24 12:22:48 1.7MB nlp deeplearning ner bert
1
简介 1、本项目是在tensorflow版本1.14.0的基础上做的训练和测试。 2、本项目为中文的文本情感分析,为多文本分类,一共3个标签:1、0、-1,分别表示正面、中面和负面的情感。 3、欢迎大家联系我 4、albert_small_zh_google对应的百度云下载地址: 链接: 提取码:wuxw 使用方法 1、准备数据 数据格式为:sentiment_analysis_albert/data/sa_test.csv 2、参数设置 参考脚本 hyperparameters.py,直接修改里面的数值即可。 3、训练 python train.py 4、推理 python predict.py 知乎代码解读
1
提供bert分类模型,使用pytorch开发,已经训练好,可以下载下来直接使用,不需要重新训练,如有问题,请提示,谢谢
2022-03-20 15:00:10 38.52MB bert 分类 classify pytorch
1
MRPC数据集,提取的多分类的任务。可分类10,跑pre-train
2022-03-15 09:07:45 214KB BERT
1
请看博客https://blog.csdn.net/qq_41335232/article/details/121664394
2022-03-14 09:28:18 413.74MB 文本分类 Bert 多标签文本分类 pytorch
1
BERT文本分类代码对应的数据
2022-03-14 09:10:32 1.48MB BERT
1
使用预训练语言模型BERT做中文NER
2022-03-08 22:41:19 3.72MB Python开发-自然语言处理
1
伯特分类服务 介绍 使用训练分类模型并通过部署模型。 然后,我们可以使用REST API进行在线预测。 开始使用 整个实验基于Chnsenticorp数据集,该数据集是正面和负面情绪的两类数据集。 0.准备训练前模型 下载中文bert模型chinese_L-12_H-768_A-12 ,然后解压缩并移至models目录。 1.训练模型 sh fine-tuning.sh 2.进行预测和导出模型 我们需要将检查点更改为张量流服务的格式。 sh export-model.sh 然后, export-model的结构将为: . └── 1569141360 ├── saved_model.pb └── variables ├── variables.data-00000-of-00001 └── variables.index 3.部署模型
1
nlpgnn 包装说明 自然语言处理领域当前正在发生巨大变化,近年来,已经提出了许多出色的模型,包括BERT,GPT等。 同时,图形神经网络作为一种精美的设计正在诸如TextGCN和Tensor-TextGCN等自然语言处理领域中不断使用。 该工具箱专用于自然语言处理,希望以最简单的方式实现模型。 关键字:NLP; 神经网络 楷模: 伯特 阿尔伯特 GPT2 TextCNN Bilstm +注意 GCN,GAN 杜松子酒 TextGCN,TextSAGE 示例(有关更多详细信息,请参见测试): BERT-NER(中英文版) BERT-CRF-NER(中英文版) BERT-CLS
2022-03-04 10:29:07 248KB nlp tf2 gin gan
1