Google开源BERT模型源代码.pdf

上传者: xinqingtuhuag | 上传时间: 2022-04-06 20:44:11 | 文件大小: 467KB | 文件类型: PDF
[Objective] This paper compares the prediction accuracy and efficiency of different machine learning algorithms, aiming to identify new consumers with repeat purchase intentions. It also provides a theoretical framework for customer classification. [Methods] First, we collected the server logs of a dealer on Taobao.com from 2015 to 2018,as well as its orders and consumers’ personal information. And then, we used different algorithms to train theproposedmodels. [Results] The SMOTE algorithm combined with the random forest algorithm obtained the highest prediction accuracy of 96%. [Limitations] The sample data size needs to be expanded. [Conclusions] The fusion algorithm basedon SMOTE and random forest has better performance in predicting repurchase intentions of new consumers.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明