机器学习在许多部署的决策系统中发挥着作用,其方式通常是人类利益相关者难以理解或不可能理解的。以一种人类可以理解的方式解释机器学习模型的输入和输出之间的关系,对于开发可信的基于机器学习的系统是至关重要的。
2021-07-28 08:55:41 314KB 机器学习 反事实解释
1
迁移学习(Transfer Learning)作为近年来的研究热点之一,受到了广泛关注,每年在各大会议上都有大量的相关文章发表。由于其广泛的应用前景,迁移学习已经成为机器学习中一个热门和有前途的领域。这篇新出论文对近几年迁移学习进行了全面综述,对现有的迁移学习研究进行梳理使其系统化,并对迁移学习的机制和策略进行全面的归纳和解读,帮助读者更好地了解当前的研究现状和思路。
2021-07-22 23:21:05 684KB transfer_learnin
1
机器学习(ML)中的可解释性对于高风险决策和故障排除是至关重要的。在这项工作中,我们提供了可解释性ML的基本原则,并消除了淡化这一关键话题的重要性的常见误解。
2021-07-20 09:10:23 5.45MB 可解释ML
1
视觉和语言在生成智能中起着至关重要的作用。因此,在过去的几年中,大量的研究致力于图像描述,即用句法和语义上有意义的句子描述图像的任务。从2015年开始,该任务通常使用由可视化编码步骤和用于文本生成的语言模型组成的流程来解决。
2021-07-18 09:06:15 3.82MB 图像描述
1
近年来,深度神经网络在工业和学术界取得了巨大的成功,特别是在视觉识别和神经语言处理方面的应用。深度学习的巨大成功,主要归功于其巨大的可扩展性,既有大规模的数据样本,也有数十亿的模型参数。
2021-07-17 14:53:22 1.06MB 《知识蒸馏》
1
本综述将基于深度学习的医学和非医学图像分割解决方案分为六大组:深度架构、基于数据合成、基于损失函数、排序模型、弱监督和多任务方法,并对每一组的贡献进行全面综述。然后,针对每一组,我们分析了每一组的不同,并讨论了当前方法的局限性和未来语义图像分割的研究方向。
2021-07-16 16:04:46 2.86MB 《医学图像深度语义分割》
1
本文章从深度神经网络(DNN)入手,对深度学习(DL)领域的研究进展进行了简要的综述。内容包括:卷积神经网络(CNN)、循环神经网络(RNN)、长时记忆(LSTM)和门控递归单元(GRU)、自动编码器(AE)、深度信念网络(DBN)、生成对抗性网络(GAN)和深度强化学习(DRL)。
2021-07-15 17:16:11 3.46MB DL 理论 架构
1
像谷歌、微软和亚马逊这样的供应商为客户提供软件接口,方便地将机器学习(ML)任务嵌入他们的应用程序。总的来说,机构可以使用ML-as-a-service (MLaaS)引擎来处理复杂的任务,例如训练分类器、执行预测等。
2021-07-13 17:08:29 781KB ML隐私
1
数据增强是通过转换为机器学习人工创建训练数据,是机器学习学科中一个广泛研究的研究领域。虽然它对于提高模型的泛化能力很有用,但它也可以解决许多其他挑战和问题,从克服有限数量的训练数据到规范目标到限制数据量用于保护隐私。
2021-07-13 17:08:28 767KB 文本分类
1
算法股票交易已经成为当今金融市场的一种主要交易方式,大多数交易现在已经完全自动化。深度强化学习(DRL)代理被证明是一种力量,在许多复杂的游戏,如国际象棋和围棋不可忽视。本文将股票市场的历史价格序列和走势看作是一个复杂的、不完全的信息环境,在这个信息环境中,本文试图实现收益最大化和风险最小化。
2021-07-09 12:06:59 1.5MB 强化学习
1