用PyTorch搭建条件生成对抗网络(CGAN),详情可参考文章:https://blog.csdn.net/didi_ya/article/details/121604572
2021-12-05 17:07:56 139KB pytorch python 生成器 神经网络
1
AnimeGAN生成对抗网络的一种简单的PyTorch实现,专注于动漫头像绘制。 随机生成的图像图像是从在143,000个动漫人物AnimeGAN上训练的DCGAN模型生成的,该游戏是Generative Adversarial Networks的简单PyTorch实现,着重于动漫头像。 随机生成的图像图像是从DCGAN模型中生成的,该模型在143,000个动漫角色脸上训练了100个历元。 图像插值操纵潜在代码,可以实现从第一行到最后一行的图像过渡。 原始图像图像不干净,可以观察到一些离群值,这会降低生成图像的质量。 用法
2021-12-04 10:57:18 16.05MB Python Image Processing
1
今天小编就为大家分享一篇pytorch GAN生成对抗网络实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-03 20:46:49 74KB pytorch GAN 生成对抗网络
1
Tensorflow中的贝叶斯生成对抗网络
2021-12-01 15:12:18 956KB Python开发-机器学习
1
无透镜同轴全息图中包含零级像和孪生像噪声,采用基于菲涅耳衍射模型的方法进行抑制时需要多幅无透镜图像。针对此问题,提出一种基于生成对抗网络(GAN)的无透镜成像方法。首先计算部分相干光照明下无透镜图像的离焦距离,根据该离焦距离反向衍射传播,得到含零级像和孪生像的物平面图像。然后对该物平面图像与作为标准参考的商用显微镜图像进行配准,将配准后的图像作为GAN的训练样本,训练后得到GAN的核函数。最后用训练好的核函数对无透镜图像进行处理,得到清晰的目标图像。实验结果表明,所提方法可对零级像和孪生像有效抑制,图像的对比度和清晰度明显提高,效果可达4×商用显微物镜。所提方法在图像重建阶段只需单张无透镜图像且无需傅里叶变换等复杂操作,成像时间大大缩短。相比于基于卷积神经网络(CNN)的方法,所提方法需要的训练数据量更少,损失函数更易收敛,具有更高的处理效率。
2021-11-30 16:58:52 12.71MB 成像系统 无透镜成 深度学习 生成对抗
1
生成对抗网络中WGAN的代码,WGAN彻底解决GAN训练不稳定的问题,不再需要小心平衡生成器和判别器的训练程度 基本解决了collapse mode的问题,确保了生成样本的多样性 训练过程中终于有一个像交叉熵、准确率这样的数值来指示训练的进程,这个数值越小代表GAN训练得越好,代表生成器产生的图像质量越高(如题图所示) 以上一切好处不需要精心设计的网络架构,最简单的多层全连接网络就可以做到
2021-11-29 14:46:02 6KB WGAN
1
pix2pix:使用生成对抗网络进行图像到图像的翻译
2021-11-25 16:25:10 4.57MB computer-vision deep-learning neural-network matlab
1
针对人脸识别中遮挡区域降低检测准确度的问题,提出一种基于生成对抗网络的遮挡人脸修复方法。该方法以生成对抗网络作为基本架构,结合Wasserstein距离和添加梯度惩罚损失函数来训练网络模型,以全局上下文损失和先验损失相结合的方式来约束网络生成无遮挡人脸图片,并利用泊松融合完成遮挡区域的修复。在CelebA数据集的实验结果表明,所提方法较其他文献模型训练更稳定,PSNR平均值提高了5%,SSIM平均值提高了8%。
1
超级GAN 纸代码对抗网络的高光谱样本的现实合成。 如果您在工作中使用此代码,请引用以下内容。 @inproceedings{audebert_generative_2018, title = {Generative adversarial networks for realistic synthesis of hyperspectral samples}, booktitle = {2018 {IEEE} {International} {Geoscience} and {Remote} {Sensing} {Symposium} ({IGARSS})}, author = {Audebert, N. and Le Saux, B. and Lefèvre, S.}, month = jul, year = {2018} } 动机 高光谱成像
2021-11-23 11:18:54 2.29MB JupyterNotebook
1
GANs 2.0:TensorFlow 2.0中的生成对抗网络 项目目标 该项目的主要目的是加快建立基于生成对抗网络的深度学习管道的过程,并简化各种生成器/区分器模型的原型。 该库提供了一些GAN培训器,它们可以用作现成的功能,例如我们: 甘香草 有条件的GAN 循环甘 瓦瑟斯坦·甘 渐进式GAN(WIP) 例子 功能建模 香草GAN(高斯函数) 香草甘(sigmod功能) 影像产生 香草甘(MNIST) 有条件的GAN(MNIST) 香草甘(FASHION_MNIST) 有条件的GAN(FASHION_MNIST) 香草甘(CIFAR10) 有条件的GAN(CIFAR10) 图片翻译 循环GAN(SUMMER2WINTER) 循环GAN(WINTER2SUMMER) 安装 安装有GPU支持 pip install gans2[tensorflow_gpu]
2021-11-22 21:16:47 62.86MB python deep-learning tensorflow python3
1