针对多能源电力系统中新能源电源容量配置问题,考虑到风光资源的不确定性,提出一种基于Wasserstein生成对抗网络(WGAN)的风光资源场景模拟和改进时序生产模拟的新能源电源容量配置模型。采用WGAN模拟大量风光资源场景,用K-medoids聚类削减得到若干典型场景,并提出综合评价指标对典型场景进行评估分析;综合考虑多能源电力系统的运行特性,基于改进时序生产模拟的线性规划模型,构建以经济性最优为目标的新能源规划模型。某地区实际电网算例仿真结果验证了所提模型的有效性以及对提高新能源消纳的显著效果,给出了新能源电源容量配置方案。
1
PokeGANS 依存关系 numpy pytorch visdom 使用方法: 使用toRGB.py将png图像处理为jpg exec run.py训练GAN 经过训练的模型保存在结果/ 创造自己的口袋妖怪玩得开心 培训程序演示 结果:
2022-11-04 14:00:51 30.93MB Python
1
SGAN:用自己的图片 # 导入需要的包 from PIL import Image # Image 用于读取影像 from skimage import io # io也可用于读取影响,效果比Image读取的更好一些 import tensorflow as tf # 用于构建神经网络模型 import matplotlib.pyplot as plt # 用于绘制生成影像的结果 import numpy as np # 读取影像 import os # 文件夹操作 import time # 计时 from keras.layers import Input, Dense,
2022-03-06 01:23:40 95KB
1
船-维根-火炬 作者:谷玉超 电子邮件: 日期:2018-05-27 说明:该代码是的pytorch实现。 概述 数据 您可以从此服务器下载火车和测试数据。 您也可以在eyedata文件夹中找到数据。 前处理 该数据集包含20个训练图像,我的预处理的第一步是随机裁剪为512 * 512。 第二步是随机更改火车图像的亮度,对比度和色相。 我在代码中实现了此方法,因此可以方便地使用它。 此外,基于gan的生成视网膜图像的方法可以用作额外的数据源。 模型 训练 python train.py 如何使用 依存关系 此代码取决于以下库: Python 3.6 火炬 皮尔 结构体 vessel gan │ ├── eyedata # drive data │  ├── gycutils # my utils for data augmentation │  ├── Criterion.p
2021-12-14 14:35:37 28.18MB deep-learning pytorch gan retina
1
生成对抗网络中WGAN的代码,WGAN彻底解决GAN训练不稳定的问题,不再需要小心平衡生成器和判别器的训练程度 基本解决了collapse mode的问题,确保了生成样本的多样性 训练过程中终于有一个像交叉熵、准确率这样的数值来指示训练的进程,这个数值越小代表GAN训练得越好,代表生成器产生的图像质量越高(如题图所示) 以上一切好处不需要精心设计的网络架构,最简单的多层全连接网络就可以做到
2021-11-29 14:46:02 6KB WGAN
1
针对人脸识别中遮挡区域降低检测准确度的问题,提出一种基于生成对抗网络的遮挡人脸修复方法。该方法以生成对抗网络作为基本架构,结合Wasserstein距离和添加梯度惩罚损失函数来训练网络模型,以全局上下文损失和先验损失相结合的方式来约束网络生成无遮挡人脸图片,并利用泊松融合完成遮挡区域的修复。在CelebA数据集的实验结果表明,所提方法较其他文献模型训练更稳定,PSNR平均值提高了5%,SSIM平均值提高了8%。
1
生成式对抗网络,搜集整理了网上关于GAN ,WGAN,汇总详解了WGAN-GP
2021-11-13 19:06:40 74.65MB WGAN GAN
1
WGAN-GP纯粹是为了满足WGAN中的李普西斯条件,WGAN自己的满足方式是gradient clipping,但是这样的话WGAN的大部分weight会是正负0.01,需要新的满足李普西斯条件的方法,这就是motivation;
2021-11-07 13:46:40 7KB WGAN-GP
1
针对不可抗力因素造成无人机航拍绝缘子图片模糊、绝缘子目标检测率较低的问题,提出了一种基于Wasserstein距离优化的生成式对抗网络(WGAN)图片去模糊的绝缘子目标检测方法。首先在WGAN训练过程中引入残差网络,使得生成的绝缘子图片更加清晰;其次在损失函数中引入Wasserstein距离以保证训练过程的稳定性;最后通过优化模型的训练过程,使得生成的绝缘子图片细节还原度更高。绝缘子图片去模糊化实验结果表明,所提方法在结构相似性与峰值信噪比等评价指标上均高于基于卷积神经网络与深度多尺度卷积神经网络等图像去模糊算法。另外,将利用所提方法生成的绝缘子图片与模糊绝缘子图片划分为3组,采用改进的基于区域建议的卷积神经网络目标检测算法分别进行目标检测实验,精确度均值分别提高了5.77%、6.73 %与5.98 %,有效提高了绝缘子的目标检测率。
1
GAN模型的Pytorch代码 这是使用相同的卷积架构的3种不同GAN模型的pytorch实现。 DCGAN(深度卷积GAN) WGAN-CP(使用重量修剪的Wasserstein GAN) WGAN-GP(使用梯度罚分的Wasserstein GAN) 依存关系 突出的软件包是: 麻木 scikit学习 张量流2.0 pytorch 1.6.0 火炬视觉0.7.0 要快速轻松地安装所有依赖项,您应该使用pip pip install - r requirements . txt 训练 在Fashion-MNIST数据集上运行DCGAN模型的训练: python main.py --model DCGAN \ --is_train True \ --download True \ -
2021-10-26 16:32:27 5.51MB Python
1