输电线路绝缘子红外图像,数据集内含6000多幅绝缘子红外图像,并利用labelimg软件对其进行了标注,标签类别为insulator(绝缘子),标签类型为yolo(txt)格式,有问题加Q:2954644583
2024-08-19 11:09:34 25.22MB 数据集
1
在图像处理领域,车牌识别是一项重要的技术,广泛应用于交通监控、智能停车场等系统。MATLAB作为一款强大的数学计算和数据分析工具,提供了丰富的图像处理函数,使得实现车牌识别变得相对简单。本项目是基于MATLAB的车牌识别系统,特别针对蓝色车牌进行设计。下面将详细介绍其中的关键技术和步骤。 1. 图像预处理: 预处理是任何图像识别系统的基础,目的是减少噪声、增强特征并统一图像质量。在这个项目中,可能包括以下步骤: - **灰度化**:将彩色图像转换为灰度图像,简化处理。 - **二值化**:通过阈值分割将图像分为前景(车牌)和背景,便于后续操作。 - **平滑滤波**:使用高斯滤波或中值滤波消除噪声,保持边缘清晰。 - **直方图均衡化**:提高图像对比度,使细节更加明显。 2. 车牌定位: 这一步通常涉及边缘检测和轮廓查找。MATLAB中的Canny算法可以用于检测边缘,而findContours函数则能找出潜在的车牌区域。为了适应不同光照和角度,可能还需要进行倾斜校正,如使用Hough变换检测直线。 3. 色彩分割: 由于蓝色车牌的特性,可以通过色彩空间转换来分离车牌。项目描述中提到,可能使用HSV颜色空间,因为其对光照变化不敏感。设置合适的HSV值范围(如蓝色车牌的HSV值域),筛选出蓝色区域。对于新能源车牌,可能需要调整HSV值域以包含其特有的绿色。 4. 特征提取与模板匹配: 识别出的车牌区域可能还需进一步细化。可以利用边缘检测、直角检测等方法,确认车牌的矩形形状。然后,提取车牌字符的特征,如高度、宽度、间距等,以模板匹配或机器学习算法进行字符识别。 5. 字符识别: 字符识别通常分为两个阶段:特征提取和分类。特征提取可能包括字符轮廓、形状、面积等;分类则可采用支持向量机(SVM)、神经网络等模型进行。MATLAB提供多种机器学习工具箱,方便进行模型训练和测试。 6. 循环处理: 项目描述中提到添加循环,这可能是指对于输入的多张图片,需要重复以上步骤进行车牌识别。循环结构可以确保每张图片都能得到处理,并将结果输出或保存。 7. 性能优化: MATLAB虽然功能强大,但在处理大量图像时速度可能较慢。为了提高效率,可以考虑使用MATLAB的并行计算工具箱,或者将部分关键代码用C/C++重写,再通过MATLAB的MEX接口调用。 通过上述步骤,基于MATLAB的车牌识别系统能有效识别蓝色车牌,并具备一定的扩展性以适应新能源车牌。然而,实际应用中可能还需要不断调整参数、优化算法,以应对各种复杂环境和条件。
2024-08-16 19:18:13 5.27MB MATLAB 图像处理 车牌识别
1
配套文章:https://blog.csdn.net/qq_36584673/article/details/136861864 文件说明: benchmark_results:保存不同倍数下测试集的测试结果 data:存放数据集的文件夹,包含训练集、测试集、自己的图像/视频 epochs:保存训练过程中每个epoch的模型文件 statistics:存放训练和测试的评估指标结果 training_results:存放每一轮验证集的超分结果对比,每张图像5行3列展示 data_utils.py:数据预处理和制作数据集 demo.py:任意图像展示GT、Bicubic、SRGAN可视化对比结果 draw_evaluation.py:绘制Epoch与Loss、PSNR、SSIM关系的曲线图 loss.py:损失函数 model.py:网络结构 test_benchmark.py:生成benchmark测试集结果 test_image.py:生成任意单张图像用SRGAN超分的结果 test_video.py:生成SRGAN视频超分的结果 train.py:训练SRGAN 使用方法见文章。
2024-08-16 14:23:17 231.09MB pytorch 超分辨率 超分辨率重建 python
1
易语言是一种专为初学者设计的编程语言,其特点在于语法简单、易学易用,因此“易语言编写抽奖程序”这个主题对于想要学习编程,尤其是易语言编程的人来说,是个很好的实践项目。抽奖程序在日常生活中广泛应用,如商场促销、活动策划等,通过程序化实现可以增加公平性和趣味性。 在易语言中编写抽奖程序,首先我们需要理解以下几个核心知识点: 1. **事件驱动编程**:易语言采用事件驱动模型,即程序响应用户操作或其他外部事件来执行特定任务。例如,点击“开始抽奖”按钮会触发一个事件,程序需要根据这个事件进行后续的抽奖逻辑。 2. **用户界面(UI)设计**:抽奖程序需要有吸引人的界面,包括按钮、文本框、图片等元素。在易语言中,可以通过集成的资源编辑器设计窗口布局和样式。 3. **随机数生成**:抽奖的关键在于随机性,易语言提供了生成随机数的函数,如`随机整数`,用于确定中奖者。需要设定一个合理的范围,比如在所有参与者的编号之间。 4. **数据结构**:程序可能需要存储参与者的信息,可以使用数组或列表等数据结构来保存这些数据。易语言支持动态数组和链表,可以根据实际需求选择。 5. **循环与条件判断**:在抽奖过程中,可能需要通过循环遍历所有参与者,然后根据随机数进行条件判断,找出中奖者。 6. **错误处理**:良好的程序应该考虑到可能出现的问题,如数据输入错误、无参与者等。易语言提供异常处理机制,可以编写错误处理代码来应对这些问题。 7. **图形图像**:标签上提到“图形图像源码”,意味着程序可能包含图形效果,如旋转、动画等,使抽奖过程更生动。易语言提供了图形绘制和动画控制的相关命令。 8. **声音播放**:为了增强用户体验,程序可能还包含声音播放功能,如中奖音效。易语言支持音频播放功能,可以通过相关命令实现。 9. **结果显示**:抽奖结果需要以某种形式展示,可能是弹出对话框、改变界面元素的显示状态,或者在指定位置输出文字。 10. **文件操作**:如果需要保存或读取历史记录,易语言的文件操作命令可以帮助我们将数据写入或读取文件。 在实践中,你可以先设计好UI,然后实现基本的抽奖逻辑,接着添加各种细节功能,如错误处理、图形效果等。通过这样一个项目,不仅可以掌握易语言的基本语法,还能锻炼到编程思维和问题解决能力。同时,这也是一个很好的学习编程的起点,因为它的难度适中,既有挑战性,又不至于让人望而却步。
2024-08-14 11:10:44 1.47MB 图形图像源码
1
二维灰度图像的小波变换和逆变换在计算机视觉与图像处理领域中扮演着重要的角色。小波变换是一种信号分析工具,能够将复杂信号分解为不同尺度和位置的局部特征,对于图像处理而言,这意味着可以对图像进行多分辨率分析,提取不同层次的细节信息。 在C++中实现小波变换,通常会用到一些开源库,如Wavelet Toolbox或OpenCV。这些库提供了丰富的函数和结构,便于开发者进行小波分析。在这个项目中,可能包含的源码文件有以下几个部分: 1. **数据读取与预处理**:使用C++的文件操作函数读取二维灰度图像,将其转换为适当的数组格式。可能使用OpenCV库中的`imread`函数来读取图像,并进行必要的预处理,例如调整图像尺寸、归一化等。 2. **小波基的选择**:小波变换涉及到多种小波基,如Haar小波、Daubechies小波、Symlet小波等。不同的小波基适用于不同的应用需求,选择合适的小波基是关键步骤。在代码中,可能会定义一个类或者结构体来表示特定的小波基函数。 3. **小波变换**:小波变换分为离散小波变换(DWT)和离散二维小波变换(2D-DWT)。2D-DWT对图像的行和列分别进行一维DWT,然后通过卷积或蝶形运算组合结果。这一过程在代码中可能包含两个递归或循环的步骤,分别对应水平和垂直方向的变换。 4. **图像分解**:小波变换后,图像被分解为低频系数(近似图像)和高频系数(细节图像)。这些系数通常存储在不同的数组或矩阵中,便于后续的处理。 5. **逆小波变换**:为了恢复图像,需要进行逆小波变换。这通常涉及到对高频系数的逆操作,以及与低频系数的合并。逆变换的过程与正向变换类似,但步骤相反。 6. **结果输出**:处理完成后,将重构的图像写入文件,通常使用OpenCV的`imwrite`函数。同时,可能还会提供可视化工具,如MATLAB的图像显示功能,以便观察变换前后图像的差异。 7. **编译与运行**:项目可能包含Makefile文件,用于配置编译选项和链接库。用户可以通过执行`make`命令来编译源码,生成可执行程序,然后运行程序来处理指定的图像。 学习这个项目的源码,可以帮助理解小波变换在图像处理中的实际应用,以及如何利用C++实现这些算法。此外,对于深入掌握小波理论、图像处理技术以及C++编程技巧都是非常有价值的。通过实践,开发者可以进一步优化代码性能,适应更复杂的图像处理任务。
2024-08-12 22:52:28 227KB 小波变换 图像处理
1
描述: 这个项目展示了如何将 MNIST160 手写数字图片数据集成功集成到 YOLOv8 图像分类框架中。通过此集成,项目成功地运用了 YOLOv8 的先进算法对手写数字进行快速、准确的识别和分类。MNIST160 数据集,包含160张高质量的手写数字图片,被优化并用于这个先进的图像分类任务,展示了 YOLOv8 在处理实际应用场景中的强大能力。 总结: 整合 MNIST160 数据集与 YOLOv8 的这个项目不仅展示了如何有效地运用最新的图像分类技术,也提供了一个实用的案例,用于探索和优化机器学习在实际应用中的潜能。
2024-08-12 10:16:45 13.21MB 数据集
1
利用VB提供的Active X控件,创建了一个名为PicView控件,实现图像的整幅浏览。
2024-08-11 09:13:26 130KB 自然科学 论文
1
在VB6(Visual Basic 6)环境中,开发人员经常需要处理图像显示的需求,例如在应用程序中展示图片或者进行图像操作。本教程将详细介绍如何利用VB6实现一个显示图像的ActiveX控件,支持PNG格式,并且具备鼠标滚轮缩放、镜像、旋转以及鼠标移动图像的功能。 我们需要创建一个新的ActiveX控件项目。在VB6中选择"文件" -> "新建" -> "工程",然后在"ActiveX控件"类别中选择"ActiveX DLL"。这将创建一个新的ActiveX控件工程。 接下来,我们在控件设计界面添加一个 Picture 控件,它是VB6内置的用于显示图片的控件。右键点击工具箱,选择"部件",在弹出的对话框中找到"Microsoft Windows Common Controls",勾选 Picture 控件并确定,这样Picture控件就会出现在工具箱中。将Picture控件拖放到设计面板上,作为显示图像的主要组件。 为了支持PNG格式,我们需要引入GDI+库,因为VB6默认不支持PNG。可以通过引入外部库或者使用第三方库如GDIPlusLib来实现。安装GDIPlusLib后,可以在控件的代码窗口中引用它: ```vb Private Declare Sub GdiplusStartup Lib "gdiplus.dll" (ByRef token As Long, ByRef init As GdiplusStartupInput, ByVal reserved As Long) Private Declare Sub GdiplusShutdown Lib "gdiplus.dll" (ByRef token As Long) Type GdiplusStartupInput DebugLevel As Long LicenseKey() As Byte End Type ``` 接着,我们需要编写代码来加载PNG图片。在控件的初始化事件中,可以使用以下代码: ```vb Dim bitmap As GDIPlusLib.Bitmap Set bitmap = New GDIPlusLib.Bitmap bitmap.LoadFromFile Me.Picture1.Picture.filename ' 加载图片 Me.Picture1.Picture = bitmap.ToOlePicture ' 将GDI+ Bitmap转换为VB6的Picture GdiplusShutdown token ' 关闭GDI+ Set bitmap = Nothing ``` 为了实现鼠标滚轮缩放功能,我们需要处理控件的MouseWheel事件。下面的代码展示了如何根据滚轮的上下滚动来改变图片的大小: ```vb Private Sub Picture1_MouseWheel(ByVal ScrollCode As Integer, ByVal KeyState As Integer, ByVal MousePos As MSForms.Point) Dim scaleFactor As Double If ScrollCode > 0 Then ' 上滚 scaleFactor = 1.1 ' 放大比例 Else ' 下滚 scaleFactor = 1 / 1.1 ' 缩小比例 End If Me.Picture1.ScaleMode = vbScalePixels ' 设置缩放模式 Me.Picture1.ScaleWidth = Me.Picture1.ScaleWidth * scaleFactor Me.Picture1.ScaleHeight = Me.Picture1.ScaleHeight * scaleFactor End Sub ``` 对于镜像和旋转操作,我们可以创建两个自定义方法,例如 `MirrorImage` 和 `RotateImage`,通过改变控件的ScaleX和ScaleY属性实现: ```vb Sub MirrorImage() Me.Picture1.ScaleX = -Me.Picture1.ScaleX End Sub Sub RotateImage(angle As Integer) Me.Picture1.ScaleMode = vbScalePixels Me.Picture1.ScaleWidth = Me.Picture1.ScaleWidth * Cos(angle * PI / 180) Me.Picture1.ScaleHeight = Me.Picture1.ScaleHeight * Sin(angle * PI / 180) End Sub ``` 处理鼠标移动图像的功能,需要在MouseMove事件中计算鼠标相对于控件左上角的位置,然后调整控件的Left和Top属性: ```vb Private Sub Picture1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As Single) If Button = vbLeftButton Then Me.Left = Me.Left + (X - Me.Picture1.Width / 2) ' 计算移动距离 Me.Top = Me.Top + (Y - Me.Picture1.Height / 2) End If End Sub ``` 现在,我们已经创建了一个具备各种图像操作功能的ActiveX控件。用户可以通过在其他VB6工程中引用这个控件,轻松地在他们的应用程序中实现显示和操作PNG图片的能力。记住,为了使用这个控件,需要在目标工程中注册ActiveX DLL文件,并在需要使用的地方添加控件实例。
2024-08-11 09:11:35 642KB VB控件 显示图片 图片缩放
1
中望3D(ZW3D) 2019是由中望3D官方最新推出的ZWCAD版本(目前国内还未更新),它是一款专为完整产品开发过程而设计的集成CAD / CAM解决方案,集曲面造型、实体建模、模具设计、装配、钣金、工程图、2-5轴加工”等功能模块于一体,具有从2轴到5轴的固体表面混合建模,非实体模具分型和智能CNC加工策略的最快内核。可覆盖产品设计开发全流程,可以广泛应用于机械、模具、零部件等制造业领域。软
2024-08-06 22:53:44 7KB 图形图像
1
在机器学习领域,支持向量机(Support Vector Machine,简称SVM)是一种强大的监督学习算法,常被用于分类和回归任务。在这个项目中,我们将探讨如何利用Python来实现SVM进行图像识别分类。这个过程对初学者非常友好,因为代码通常会包含详尽的注释,便于理解。 我们需要理解SVM的基本原理。SVM的核心思想是找到一个最优的超平面,使得不同类别的数据点被最大程度地分开。这个超平面是距离两类样本最近的距离最大化的边界。在二维空间中,这个超平面可能是一条直线;在高维空间中,它可能是一个超平面。SVM通过核函数将低维数据映射到高维空间,使得原本线性不可分的数据变得可以线性分离。 在图像识别中,我们首先需要提取图像的特征。HOG(Histogram of Oriented Gradients,导向梯度直方图)是一种流行的方法,它能有效地捕获图像中的形状和边缘信息。HOG特征的计算包括以下几个步骤: 1. 尺度空间平滑:减少噪声影响。 2. 灰度梯度计算:计算每个像素的梯度强度和方向。 3. 梯度直方图构造:在小的局部区域(细胞单元)内统计不同方向的梯度数量。 4. 直方图归一化:防止光照变化的影响。 5. 块级积累:将相邻的细胞单元组合成一个块,进行方向直方图的重排和标准化,进一步增强对比度。 6. 特征向量构建:将所有块的直方图组合成一个全局特征向量。 接下来,我们可以使用这些HOG特征作为输入,训练SVM分类器。Python中常用的机器学习库Scikit-Learn提供了SVM的实现。我们可以通过以下步骤进行操作: 1. 加载数据集:通常我们会用到预处理好的图像数据集,如MNIST或CIFAR-10。 2. 准备数据:将图像转换为HOG特征,同时分割数据集为训练集和测试集。 3. 创建SVM模型:选择合适的核函数,如线性核、多项式核或RBF(高斯核),并设置相应的参数。 4. 训练模型:使用训练集对SVM进行拟合。 5. 验证与测试:在测试集上评估模型的性能,例如计算准确率、召回率和F1分数。 6. 应用模型:对新的未知图像进行预测,分类结果。 在实现过程中,我们需要注意数据预处理,如归一化特征,以及选择合适的参数进行调优,如C(惩罚参数)和γ(RBF核的宽度)。交叉验证可以帮助我们找到最佳参数组合。 本项目中的代码示例将详细展示这些步骤,通过注释解释每部分的作用,帮助初学者快速上手SVM图像分类。通过实践,你可以深入理解SVM的工作机制,并掌握如何将其应用于实际的图像识别问题。
2024-08-05 09:07:03 218.95MB python 支持向量机 机器学习 图像分类
1