医学图像处理领域的深度学习综述及前沿进展

上传者: yanceyxin | 上传时间: 2025-06-21 10:55:48 | 文件大小: 2.61MB | 文件类型: PDF
内容概要:本文详细介绍了深度学习(Deep Learning)及其相关技术如何在医学图像处理各个应用领域能够显著提升效果并改变传统方法的内容和研究进展。具体而言,文章探讨了深度学习理论与基本概念,以及它们在医学图像检测与识别、分割任务中的出色表现,对图像配准和重建也有重要贡献。文中还提到了一些先进的网络架构如自编码器、对抗生成网络(GAN)、ResNets、U-net等在医疗影像的具体应用场景和技术细节;物理建模方面亦有所涉猎,并特别强调了基于深度神经网络的数据驱动物理模拟带来的潜在优势。与此同时,文章讨论了几项当前面临的关键挑战,例如数据增强的重要性及其带来的改进可能性、以及可能引起误分类的问题——对抗样本攻击的影响。此外还简要论述了计算加速硬件、开源软件工具箱等对迅速发展的支撑因素。 适合人群:医学图像研究人员和专业学生,尤其那些希望深入理解和掌握深度学习应用于医学图像处理的科学家和临床医生。 使用场景及目标:帮助研究人员理解并实施新的算法以解决实际中的各种医学成像难题,提高诊断效率并支持个性化治疗决策。 其他说明:鉴于本论文覆盖范围广博并且不断更新,推荐读者关注最新的科研动态以便紧跟该领域的快速进步态势。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明