"股票数据可视化" 是一项基于Python语言的数据分析工作,旨在将股票市场的数据可视化成易于理解的图表和图形。通过使用Python的工具和库,股票数据可视化的工作者可以从各类数据源中提取出市场数据,并使用数据可视化技术制作成各种形式的图表和报告,其中包括股票价格趋势图、K线图、成交量柱状图等。通过这些图形的展示,股票数据可视化工作者可以帮助市场参与者更好地理解股票市场的走势趋势,以及市场进一步发展的趋势。
2024-05-23 14:20:39 318KB python 数据分析 数据可视化 课程设计
1
利用python-Flask框架搭建本地数据可视化网站
2024-05-22 16:36:48 6.21MB flask python
1
经济学效用函数的3D可视化图像合集,包含: U(x,y)=x+y U(x,y)=xy 以及 U(x,y)=a(x+y)-(x^2+y^2+2sxy)+m (当s=0, 0.4, 0.8, 1时) 图像使用echarts制作
2024-05-21 15:49:47 6KB 效用函数 可视化 需求函数
1
【资源说明】 Python毕业设计-基于Django的大众点评美食数据的空间分析及可视化网站的设计与实现+使用说明+全部资料(优秀项目).zipPython毕业设计-基于Django的大众点评美食数据的空间分析及可视化网站的设计与实现+使用说明+全部资料(优秀项目).zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如软件工程、计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也可作为毕设项目、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 3、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
2024-05-21 11:11:14 3.46MB Python Django 毕业设计 课程设计
KityMinder核心 简介 KityMinder是一款强大的脑图可视化/编辑工具,由百度FEX团队开发并维护。 本仓库是KityMinder的核心实现部分: 包括脑图数据的可视化展示(Json格式) 包括强大的编辑功能的KityMinder编辑器请移步 不包含第三方格式(FreeMind,XMind,MindManager)的支持,可以加载来扩展第三方格式支持。 不包含文件存储的支持,需要自行实现存储。参照柯林斯中的开源的FIO +百度网盘方案进行实现。 使用 可以参考进行使用。 < div xss=removed> < / div > < script type = "text/javascript" src = "kityminder.core.min.js" > < / script > < script type = "text/javascript
2024-05-20 10:22:38 266KB JavaScript
1
得利捷DS2100N扫码枪中文手册,DS2100N是一款新型的工业激光条码读取器。它充分利用了Datalogic Automation公司在一维条码读取领域的成功经验,满足了来自全球制造行业的各种应用需求。DS2100N广泛的应用于仓库、车间和OEM中,为客户提高了盈利能力和生产效率。
2024-05-20 09:32:17 5.94MB 可视化
1
django+mysql+echarts实现数据可视化到前端
2024-05-18 22:03:57 2.7MB Django
1
Python数据分析与可视化大作业 + 源代码 + 数据 + 详细文档
2024-05-18 13:30:40 7.77MB python 数据分析 可视化 numpy
1
这是一个基于YOLOv8模型的热图生成工具,可以用来分析和可视化深度学习模型在图像识别和目标检测任务中的关注点。该工具使用Grad-CAM技术生成覆盖在原始图像上的热图,从而揭示了模型在预测时赋予图像不同部分的重要性。热图中不同颜色的区域显示了模型关注的程度,红色或黄色表示高度关注的区域,蓝色或绿色则表示关注度较低的区域。 该工具可以帮助研究人员、学生和AI工程师更好地理解和解释他们的模型,尤其是在进行模型调试和优化时。它对于提高模型透明度和加深用户对模型决策过程的理解非常有价值。 使用这个工具,用户可以对自己的图像数据集进行热图分析,从而洞察模型在处理特定图像或图像集时的行为模式。它适用于多种用途,包括但不限于自动驾驶车辆的视觉系统,安防监控,医疗图像分析,以及任何需要图像识别和目标检测的应用。 请注意,使用此工具需要基本的深度学习和计算机视觉知识,以及对YOLOv8模型和PyTorch框架的熟悉。 (该文件建议放在你yolov8项目根目录下)
2024-05-16 16:09:35 7KB pytorch 计算机视觉 源码
1
主要功能和技术说明如下: (1)Flume数据采集,HDFS数据储存 (2)hive数据仓库分层设计,包含ODS、DWD、ADS层 (3)sqoop数据迁移,完成HIve与MySQL数据库中的数据交互 (4)Echarts搭建动态可视化大屏 (5)SpringBoot搭建可视化后台系统,完成前端与后台的数据传递与交互。 (6)基于Cenots7 搭建虚拟机,配置Hadoop、HDFS、Hive、sqoop、flume、mysql等大数据组件。
2024-05-16 09:24:27 24.01MB hive 数据仓库 可视化大屏
1