标题中的“three_SPWM控制_三相并网_光伏_三相并网逆变_逆变器_”指的是一个关于三相并网逆变器的SPWM(Sinusoidal Pulse Width Modulation,正弦脉宽调制)控制技术在光伏应用中的实施方案。这一技术对于理解和设计高效、可靠的光伏电力系统至关重要。 SPWM控制是一种广泛应用的调制方法,它通过改变脉冲宽度来模拟正弦波形,从而实现对交流输出电压的有效控制。在三相并网逆变器中,SPWM技术能够提供高质量的交流输出,降低谐波失真,并提高能效。这种控制策略使得逆变器可以与电网平滑连接,保证电力传输的稳定性和效率。 三相并网逆变器是将直流电转换为与电网同步的交流电的关键设备,尤其在太阳能发电系统中,逆变器的作用是将光伏电池板产生的直流电转化为电网可接受的交流电。光伏逆变器不仅需要处理功率转换,还需要具备并网功能,即能够自动调整自身的频率和电压以匹配电网参数,同时确保电网安全和稳定。 光伏系统中的SPWM控制策略通常包括以下几个关键环节: 1. **直流侧电压控制**:通过调节直流侧电压,确保逆变器在不同光照条件下都能稳定工作。 2. **电流控制**:通过SPWM算法生成控制信号,使逆变器输出的三相交流电流接近正弦波形,减少谐波含量。 3. **锁相环(PLL)技术**:用于检测电网电压相位,确保逆变器输出的电流与电网电压同相位,实现并网。 4. **保护机制**:包含过电压、过电流、短路等保护功能,保障系统安全运行。 5. **最大功率点跟踪(MPPT)**:优化光伏电池的功率输出,即使在光照强度变化时也能获取最大能量。 压缩包中的“three.mdl”可能是一个Matlab/Simulink模型文件,用于模拟和分析三相并网逆变器的SPWM控制策略。用户可以通过这个模型来仿真逆变器的动态性能,调整控制参数,以及验证系统在不同条件下的行为。 三相并网逆变器的SPWM控制技术是光伏电力系统的核心组成部分,它涉及到电力电子、控制理论、信号处理等多个领域的知识。掌握这一技术有助于设计出高性能、高效率的光伏并网系统,满足绿色能源发展的需求。
2024-08-31 21:54:45 10KB SPWM控制 三相并网 三相并网逆变
1
STM32F103C8T6是意法半导体(STMicroelectronics)生产的一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计,包括电机控制。在本项目中,我们将讨论如何使用STM32F103C8T6生成互补的带死区的SPWM(Sinusoidal Pulse Width Modulation)波形。 SPWM是一种广泛应用的脉宽调制技术,常用于逆变器和交流电机驱动。它通过改变脉冲宽度来模拟正弦波,从而调整输出电压的平均值。在电机控制中,为了保证功率开关器件的安全,通常会在两个互补输出之间设置一定的“死区时间”,避免两个开关同时导通,造成直通短路。 生成SPWM波的步骤如下: 1. **频率设定**:需要确定SPWM的基频,这将决定调制信号的频率,通常与逆变器的工作频率一致。 2. **调制度计算**:调制度是决定SPWM波形幅度的关键参数,它与占空比直接相关,决定了输出电压的大小。 3. **正弦波生成**:可以使用查表法或者数学函数(如CORDIC算法)生成与调制度对应的正弦波采样点。 4. **比较器设置**:将正弦波采样点与三角载波进行比较,根据比较结果生成PWM脉冲。 5. **死区时间插入**:在两个互补的PWM输出之间插入一定时间的死区,防止开关器件同时导通。 在STM32F103C8T6上实现这些功能,主要涉及以下寄存器和外设: - **TIM定时器**:比如TIM3或TIM4,它们可以用来生成PWM波形。配置定时器的计数器预装载值以实现所需的基频,设置自动重载值来确定PWM周期。 - **CCRx捕获/比较寄存器**:设置PWM的占空比,根据正弦波采样点与三角波比较结果更新这些寄存器。 - **死区时间寄存器(DTG)**:在TIMx_BDTR寄存器中配置死区时间,确保死区时间在每个PWM周期内正确插入。 - **输出极性(OPM)和输出使能(OE)**:确保互补输出的正确配置,避免短路。 - **中断和DMA**:如果需要实时更新SPWM,可以利用中断或DMA来处理新的正弦波采样点。 文件名中的`.uv*`文件可能是Keil uVision项目文件,它们包含了项目的配置信息、编译设置以及工程结构。而`Hardware`目录可能包含了电路设计的相关资料,例如原理图和PCB布局。 总结来说,生成互补的带死区的SPWM波是通过STM32的定时器功能实现的,涉及到寄存器配置、比较器操作以及死区时间设置。实际应用中,还需要结合具体的硬件电路和软件框架进行详细的设计和调试。
2024-07-11 18:33:03 10.35MB spwm stm32
1
但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
2024-07-02 20:15:17 614KB 技术应用
1
单相逆变器重复控制。 采用重复控制与准比例谐振控制相结合的符合控制策略,spwm调制环节采用载波移相控制,进一步降低谐波。 仿真中开关频率20k,通过FFT分析,谐波主要分布在40k附近,并没有分布在20k附近,载波移相降低了谐波含量。 整个仿真全部离散化,包括采样与控制的离散,控制与采样环节没有使用simulink自带的模块搭建,全部手工搭建。
2024-05-25 14:53:10 3KB
1
SPWM波形protues仿真程序 51单片机SPWM波形产生代码 protues仿真
2024-05-13 00:16:52 92KB 51单片机
1
  简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。
2024-02-25 18:07:33 310KB 正弦波逆变器 SPWM 技术应用
1
变频器与电缆长距离连接的应用已很普遍,但这种连接导致电动机绝缘受损已越来越受到关注。从理论上分析了长距离电缆线路波反射的机理,通过采用Saber仿真软件建立仿真模型,得出基于长线数学模型变频调速系统的等效电路图,为不同场合变频应用系统消除高次谐波反射过电压振荡与抗干扰设计提供了参考依据。以变频器与电动机间电缆的长度问题为切入点,寻求一种电缆与变频器、电动机之间的合理匹配,提出了变频系统动力电缆选型要考虑的因素,给出了变频器载波频率与变频电缆导线截面校正系数与变频电缆温度校正系数,以及使用普通电力电缆时,通过加装电抗器的方法,可增加变频器与负载电动机的最大距离。
1
为了实现应急电源中逆变器输出交流电压的适时调节,减小输出电压谐波达到逆变电路数字化控制目的,三相逆变电路采用了正弦脉宽调制(SPWM)控制方法,以C8051F020单片机和SA4828为核心,完成对SPWM波的产生及系统的控制。
2024-02-24 14:54:05 294KB SA4828 SPWM 逆变控制器 课设毕设
1
电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真
2024-01-22 17:14:43 30KB 电力电子技术仿真 SPWM
1
1 前 言随着信息技术的不断发展和计算机应用的日益普及,高新技术设备对供电质量的要求越来越高,很多设备都要求电源能够持续提供恒频恒压、无崎变的纯正弦波交流电,不间断电源UPS就是用来给这些设备供电的。UPS一般采用正弦脉宽调制(SPWM)的控制方法将直流电逆变成正弦波交流电。目前,SPWM控制波形的产生一般有三种方式:1、用分立元件电路产生,主要由三角波发生器、正弦波发生器和比较器组成。分立元件电路复杂,调试困难,成本高,可靠性差,因此一般很少采用。2、用专用集成芯片产生,专用集成芯片功能强大,输出波形质量高,应用比较广泛。3、用单片机实现,现在许多单片机都具有产生SPWM波的功能,采用单片机可使电路简单可靠,而且还方便对系统其他数据参数的监控、显示和处理,使整个系统的控制非常的方便。本文就是采用PIC16F73单片机产生SPWM波来控制UPS电源中的逆变系统的。2硬件电路设计系统总体硬件框图所示:电网输入交流电经整流滤波电路后,变成直流电压,送入功率因数校正模块(PFC),进行功率因数校正,并同时进行直流电压调整,升压到360V。另一方面,蓄电池输出的48V直流电压经过蓄电池升压电路
2024-01-17 16:40:08 83KB PIC单片机 SPWM
1