有源电力滤波器(APF)是一种先进的电力电子设备,用于改善电网的谐波问题。APF通过检测电网中的谐波电流,并产生相应的补偿电流,以实现对谐波的实时抑制,从而提高电能质量。在本项目中,我们探讨了如何在MATLAB/Simulink环境下对APF进行建模与仿真。 MATLAB是一种广泛使用的数学计算和编程环境,而Simulink是其附带的图形化仿真工具,适用于多域系统模拟,包括电气工程、控制系统、信号处理等领域。在这里,APF的建模工作主要涉及电路理论、电力电子变换器以及控制算法的设计。 APF的核心部分是电力变换器,通常采用电压源逆变器(VSI)。VSI通过脉宽调制(PWM)技术来控制输出电压的波形。PWM是一种常见的开关模式控制策略,通过调整开关器件的开通和关断时间比例,改变输出电压的平均值,进而实现对输出电压或电流的调节。在本项目中,我们使用的是正弦脉宽调制(SPWM),它能够产生接近正弦波形的输出,降低了谐波含量。 SPWM的实现主要包括以下几个步骤: 1. 生成参考正弦波:这是SPWM的基础,决定了输出电压的理想波形。 2. 计算比较基准:通常选择一组等幅不等宽的三角波作为比较基准。 3. 比较和决策:将参考正弦波与三角波进行比较,确定开关器件的开关时刻。 4. 输出驱动:根据比较结果,生成驱动信号控制逆变器的开关器件。 在MATLAB/Simulink环境中,我们可以利用内置的模块库构建APF和SPWM控制系统的模型。包括电源模块、滤波器模块、逆变器模块、PWM控制器模块以及电机模型。永磁同步电机(PMSM)因其高效率和高功率密度,在现代工业应用中被广泛应用。在仿真中,PMSM的动态行为需准确建模,以反映其在不同工况下的性能。 通过设置适当的参数和边界条件,运行Simulink模型,可以得到APF补偿后电网电流的仿真波形。分析这些波形,我们可以评估APF的补偿效果,包括谐波抑制程度、电流总谐波失真(THD)等指标。如果仿真结果满足设计要求,那么APF的硬件实现就有了理论基础。 这个项目展示了如何在MATLAB/Simulink平台上实现有源电力滤波器的建模与仿真,以及SPWM控制策略在永磁同步电机中的应用。这为理解和研究APF系统提供了直观的工具,也为实际工程应用提供了理论支持。
2024-10-25 18:30:16 19KB SPWM MATLAB Simulink
1
标题中的“three_SPWM控制_三相并网_光伏_三相并网逆变_逆变器_”指的是一个关于三相并网逆变器的SPWM(Sinusoidal Pulse Width Modulation,正弦脉宽调制)控制技术在光伏应用中的实施方案。这一技术对于理解和设计高效、可靠的光伏电力系统至关重要。 SPWM控制是一种广泛应用的调制方法,它通过改变脉冲宽度来模拟正弦波形,从而实现对交流输出电压的有效控制。在三相并网逆变器中,SPWM技术能够提供高质量的交流输出,降低谐波失真,并提高能效。这种控制策略使得逆变器可以与电网平滑连接,保证电力传输的稳定性和效率。 三相并网逆变器是将直流电转换为与电网同步的交流电的关键设备,尤其在太阳能发电系统中,逆变器的作用是将光伏电池板产生的直流电转化为电网可接受的交流电。光伏逆变器不仅需要处理功率转换,还需要具备并网功能,即能够自动调整自身的频率和电压以匹配电网参数,同时确保电网安全和稳定。 光伏系统中的SPWM控制策略通常包括以下几个关键环节: 1. **直流侧电压控制**:通过调节直流侧电压,确保逆变器在不同光照条件下都能稳定工作。 2. **电流控制**:通过SPWM算法生成控制信号,使逆变器输出的三相交流电流接近正弦波形,减少谐波含量。 3. **锁相环(PLL)技术**:用于检测电网电压相位,确保逆变器输出的电流与电网电压同相位,实现并网。 4. **保护机制**:包含过电压、过电流、短路等保护功能,保障系统安全运行。 5. **最大功率点跟踪(MPPT)**:优化光伏电池的功率输出,即使在光照强度变化时也能获取最大能量。 压缩包中的“three.mdl”可能是一个Matlab/Simulink模型文件,用于模拟和分析三相并网逆变器的SPWM控制策略。用户可以通过这个模型来仿真逆变器的动态性能,调整控制参数,以及验证系统在不同条件下的行为。 三相并网逆变器的SPWM控制技术是光伏电力系统的核心组成部分,它涉及到电力电子、控制理论、信号处理等多个领域的知识。掌握这一技术有助于设计出高性能、高效率的光伏并网系统,满足绿色能源发展的需求。
2024-08-31 21:54:45 10KB SPWM控制 三相并网 三相并网逆变
1
STM32F103C8T6是意法半导体(STMicroelectronics)生产的一款基于ARM Cortex-M3内核的微控制器,广泛应用于各种嵌入式系统设计,包括电机控制。在本项目中,我们将讨论如何使用STM32F103C8T6生成互补的带死区的SPWM(Sinusoidal Pulse Width Modulation)波形。 SPWM是一种广泛应用的脉宽调制技术,常用于逆变器和交流电机驱动。它通过改变脉冲宽度来模拟正弦波,从而调整输出电压的平均值。在电机控制中,为了保证功率开关器件的安全,通常会在两个互补输出之间设置一定的“死区时间”,避免两个开关同时导通,造成直通短路。 生成SPWM波的步骤如下: 1. **频率设定**:需要确定SPWM的基频,这将决定调制信号的频率,通常与逆变器的工作频率一致。 2. **调制度计算**:调制度是决定SPWM波形幅度的关键参数,它与占空比直接相关,决定了输出电压的大小。 3. **正弦波生成**:可以使用查表法或者数学函数(如CORDIC算法)生成与调制度对应的正弦波采样点。 4. **比较器设置**:将正弦波采样点与三角载波进行比较,根据比较结果生成PWM脉冲。 5. **死区时间插入**:在两个互补的PWM输出之间插入一定时间的死区,防止开关器件同时导通。 在STM32F103C8T6上实现这些功能,主要涉及以下寄存器和外设: - **TIM定时器**:比如TIM3或TIM4,它们可以用来生成PWM波形。配置定时器的计数器预装载值以实现所需的基频,设置自动重载值来确定PWM周期。 - **CCRx捕获/比较寄存器**:设置PWM的占空比,根据正弦波采样点与三角波比较结果更新这些寄存器。 - **死区时间寄存器(DTG)**:在TIMx_BDTR寄存器中配置死区时间,确保死区时间在每个PWM周期内正确插入。 - **输出极性(OPM)和输出使能(OE)**:确保互补输出的正确配置,避免短路。 - **中断和DMA**:如果需要实时更新SPWM,可以利用中断或DMA来处理新的正弦波采样点。 文件名中的`.uv*`文件可能是Keil uVision项目文件,它们包含了项目的配置信息、编译设置以及工程结构。而`Hardware`目录可能包含了电路设计的相关资料,例如原理图和PCB布局。 总结来说,生成互补的带死区的SPWM波是通过STM32的定时器功能实现的,涉及到寄存器配置、比较器操作以及死区时间设置。实际应用中,还需要结合具体的硬件电路和软件框架进行详细的设计和调试。
2024-07-11 18:33:03 10.35MB spwm stm32
1
但由于控制环路的延时作用,单极性控制方式的逆变器仍然受一个问题的困扰,即在过零点存在一个明显的振荡。单极性控制方式又包括单边方式和双边方式,双边方式相对于单边方式在抑止过零点振荡方面有一定优势,但仍然无法做到过零点的平滑过渡。为了提高逆变器的输出波形质量,本文分析了,单极性双边控制方式,分析了其振荡产生原因,并介绍一种解决过零点振荡的方案。
2024-07-02 20:15:17 614KB 技术应用
1
单相逆变器重复控制。 采用重复控制与准比例谐振控制相结合的符合控制策略,spwm调制环节采用载波移相控制,进一步降低谐波。 仿真中开关频率20k,通过FFT分析,谐波主要分布在40k附近,并没有分布在20k附近,载波移相降低了谐波含量。 整个仿真全部离散化,包括采样与控制的离散,控制与采样环节没有使用simulink自带的模块搭建,全部手工搭建。
2024-05-25 14:53:10 3KB
1
SPWM波形protues仿真程序 51单片机SPWM波形产生代码 protues仿真
2024-05-13 00:16:52 92KB 51单片机
1
  简单地说,逆变器就是一种将低压(12或24伏或48伏)直流电转变为220伏交流电的电子设备。因为我们通常是将220伏交流电整流变成直流电来使用,而逆变器的作用与此相反,因此而得名。
2024-02-25 18:07:33 310KB 正弦波逆变器 SPWM 技术应用
1
变频器与电缆长距离连接的应用已很普遍,但这种连接导致电动机绝缘受损已越来越受到关注。从理论上分析了长距离电缆线路波反射的机理,通过采用Saber仿真软件建立仿真模型,得出基于长线数学模型变频调速系统的等效电路图,为不同场合变频应用系统消除高次谐波反射过电压振荡与抗干扰设计提供了参考依据。以变频器与电动机间电缆的长度问题为切入点,寻求一种电缆与变频器、电动机之间的合理匹配,提出了变频系统动力电缆选型要考虑的因素,给出了变频器载波频率与变频电缆导线截面校正系数与变频电缆温度校正系数,以及使用普通电力电缆时,通过加装电抗器的方法,可增加变频器与负载电动机的最大距离。
1
为了实现应急电源中逆变器输出交流电压的适时调节,减小输出电压谐波达到逆变电路数字化控制目的,三相逆变电路采用了正弦脉宽调制(SPWM)控制方法,以C8051F020单片机和SA4828为核心,完成对SPWM波的产生及系统的控制。
2024-02-24 14:54:05 294KB SA4828 SPWM 逆变控制器 课设毕设
1
电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真 电力电子技术仿真-三相SPWM逆变电路的Simulink仿真
2024-01-22 17:14:43 30KB 电力电子技术仿真 SPWM
1