内容概要:本文详细介绍了锂离子电池恒流恒压充电(CC-CV)的Simulink仿真模型及其电路结构。首先解释了锂离子电池的基本概念以及CCCV控制系统的作用。接着,文章详细描述了恒流恒压充电的两个主要阶段——恒流(CC)阶段和恒压(CV)阶段,在这两个阶段中,分别施加恒定电流和恒定电压以确保电池安全快速充电。文中还展示了如何使用Simulink进行仿真建模,包括直流电压源、DC/DC变换器等组件的功能和性能。最后,提供了2000多字的说明文档和相关参考文献,帮助读者深入了解锂离子电池的充电过程和技术细节。 适合人群:从事电力电子、电池管理系统设计的研究人员和工程师,以及对锂离子电池充电技术感兴趣的高校学生。 使用场景及目标:适用于需要掌握锂离子电池恒流恒压充电原理和技术实现的专业人士,旨在提升他们对该领域的理论认知和实际操作能力。 其他说明:附赠详细的说明文档和参考文献,有助于进一步探索和研究锂离子电池的充电机制。
2026-02-15 14:03:19 343KB
1
可以稳定运行,三相变流器
2026-02-09 21:41:13 54KB simulink
1
永磁同步电机(PMSM)匝间短路故障Simulink仿真研究与文档参考指南,永磁同步电机(PMSM)匝间短路故障仿真研究与文档参考说明,永磁同步电机(pmsm)匝间短路故障simulink仿真。 提供文档参考说明。 ,PMSM; 匝间短路故障; Simulink仿真; 文档参考说明,永磁同步电机匝间短路故障的Simulink仿真研究 永磁同步电机(PMSM)是现代电机技术中的一种重要类型,以其高效率、高功率密度以及低惯性的优势,在诸多领域中得到了广泛的应用。然而,在实际运行中,PMSM电机可能会发生匝间短路故障,这种故障会对电机的性能和寿命产生重大影响。因此,对PMSM匝间短路故障进行深入研究,特别是运用仿真工具进行模拟分析,显得尤为重要。 Simulink是MATLAB的一个集成环境,广泛应用于多域仿真和基于模型的设计。利用Simulink进行PMSM匝间短路故障的仿真研究,可以有效地模拟电机在发生故障时的行为,帮助工程师在没有实际制造和测试物理原型的情况下,评估电机性能和故障响应。通过仿真分析,可以对电机设计进行改进,提高电机的可靠性和安全性。 本文档提供了关于PMSM匝间短路故障仿真研究的详细说明和参考,内容涵盖了永磁同步电机的基本工作原理、匝间短路故障的原因、影响以及如何利用Simulink进行故障模拟和分析。文档中的理论分析部分详细介绍了电机正常和故障状态下的工作特性,帮助读者理解故障对电机性能的具体影响。此外,文档还提供了电机匝间短路故障仿真的具体步骤,包括模型建立、参数设置、仿真执行和结果分析等。 通过这些仿真分析,工程师可以更直观地了解故障状态下电机内部电流、电压的变化,以及由此产生的转矩和效率的波动。这对于及时检测和诊断电机故障,制定有效的维修和保护策略具有重要的指导意义。 同时,文档还强调了Simulink仿真在电机设计和故障诊断领域的应用价值,展示了如何通过仿真技术来优化电机控制策略,提高系统的整体性能。这不仅有助于降低研发成本,还能缩短产品开发周期,为电机技术的创新和进步提供强有力的支撑。 本文档为读者提供了一套完整的PMSM匝间短路故障仿真研究和文档参考指南,旨在帮助相关领域的工程师和技术人员更好地理解和掌握PMSM电机故障的仿真分析方法,为电机的设计、优化和维护提供科学依据。
2026-02-07 01:52:14 3.11MB
1
本文介绍了如何利用Simulink Test的API函数,通过设计特定格式的Excel模板,实现自动创建Test Sequence和Test harness的方法。文章详细描述了从Excel模板设计到m脚本编写的全过程,包括自动创建Test harness、删除已有harness、设置时间参数以及自动生成Test Sequence的关键步骤。此外,还提供了创建测试步、修改测试步、设置跳转条件和子测试步的具体API函数示例。最后,文章强调了填写Excel时需要注意的细节,并预告了后续关于Test Manager File及Test Report自动生成的内容。 在现代工程实践中,自动化测试扮演着至关重要的角色,尤其是在复杂的系统和模型测试中。Simulink Test作为MathWorks推出的一款功能强大的测试工具,它支持测试自动化,能够提高测试的效率和准确性。本文将介绍如何通过编写m脚本和设计Excel模板来自动化Simulink Test的若干关键操作。文章讲解了如何搭建一个自动化测试的框架,包括基础的模板设计原则和相关的API函数,为自动化测试的实施奠定基础。 在自动化测试流程中,首先需要准备一个结构化的Excel模板。该模板是连接Simulink测试环境与测试数据的桥梁,它定义了测试中需要的各项参数和配置。模板的设计需要遵循一定的规则,以确保m脚本能够正确解析和应用这些数据。 紧接着,文章详细介绍了m脚本编写的步骤。m脚本是MATLAB的一种脚本语言,用于编写自动化测试代码。在本文中,m脚本被用来读取Excel模板中的数据,并按照预定义的逻辑执行特定的自动化操作。这包括了创建Test Sequence和Test harness,以及进行Test harness的管理,如删除已存在的harness。此外,脚本还可以设置时间参数,这对于模拟特定的测试条件非常关键。 文章深入讲解了如何通过m脚本自动生成Test Sequence。Test Sequence是在Simulink中模拟特定操作顺序的工具,通过它可以描述复杂的测试用例。文中不仅展示了创建测试步、修改测试步、设置跳转条件和子测试步的方法,而且提供了具体的API函数实例,这些实例直接关联到Simulink Test中的相应功能。 作者强调了在使用Excel模板时的注意事项。这些细节可能会影响模板的解析和脚本的执行,因此需要给予足够的关注。文章还预告了后续内容,将对Test Manager File和Test Report的自动生成进行深入探讨,这进一步展示了Simulink测试自动化的强大潜力和广阔应用前景。 考虑到Simulink和MATLAB在工程设计和仿真中的广泛应用,本文的内容对于希望提高测试效率和准确性的工程师和研究人员具有极高的参考价值。通过学习本文介绍的方法,读者将能够灵活地利用Simulink Test的功能,提升测试工作的自动化程度,从而节约时间,减少人为错误,提高测试质量。
2026-02-06 10:29:21 4KB Simulink MATLAB
1
Matlab R2019a与Carsim 2019.1五次多项式换道轨迹规划与MPC跟踪控制模型解读,五次多项式道轨迹规划+MPC轨迹跟踪控制simulink模型(有说明文档) 版本:Matlab R2019a Carsim2019.1 模型采用五次多项式道轨迹,考虑道过程中的边界条件约束和侧向加速度约束,可以满足不同侧向加速度下的道轨迹规划 采用MPC模型预测控制对道轨迹进行跟随,经验证轨迹跟踪效果良好 ,核心关键词:五次多项式换道轨迹规划; MPC轨迹跟踪控制; Simulink模型; 边界条件约束; 侧向加速度约束; 轨迹跟踪效果。,"Matlab R2019a下五次多项式换道轨迹规划与MPC跟踪控制的Simulink模型研究"
2026-01-30 10:19:21 216KB 哈希算法
1
"2018b版三相绕组不对称PMSM模型Simulink建模及其传统双闭环(PI)控制架构与实验",三相绕组不对称永磁同步电机Simulink模型架构及其PI控制方法的研究与实现,该模型为三相绕组不对称的永磁同步电机 PMSM的simulink模型。 模型架构为PMSM的传统双闭环(PI)控制(版本2018b),模型中还包括以下模块: 1)1.5延时补偿模块 2)死区模块 3)中断模块(尽可能模拟实际控制系统中使用的中断函数) 市面上的永磁同步电机 PMSM的三相绕组不可能完全对称,会存在相绕组和相电阻的不对称。 三相绕组不对称会导致三相电流的基波电流幅值不同,同时还会在电机相电流中产生一定的三次谐波电流,其在dq坐标系下等效于二次谐波电流。 而simulink中自带的PMSM模型并未考虑三相绕组不对称,因此需要自己搭建相应的电机模型。 该电机模型包考虑了三相绕组不对称,因此其电机模型更接近于实际的电机模型。 系统已经完全离散化,与实验效果非常接近(如果需要关闭三相绕组不对称,可直接在仿真参数中,把三相绕组不对称参数设置为0)。 联系后,会将simulink仿真模型以及相应的参考文献
2026-01-28 22:18:26 396KB
1
内容概要:本文介绍了一款名为Simulink简易自动化测试工具的工具箱,旨在提高模型测试效率。该工具箱支持批处理运行Simulink模型,允许用户通过Excel文件配置参数,自动化执行多次仿真测试,并将结果保存到MAT文件中。此外,工具还提供结果对比功能,自动生成测试通过与否的结论,并记录运行过程中的日志信息。整个流程完全自动化,无需人工干预,确保了测试的可靠性与稳定性。该工具已经在FEV大厂经过多次验证,证明其高效性和稳定性。 适合人群:从事Simulink建模与仿真的工程师和技术人员,尤其是那些需要频繁进行模型测试的人群。 使用场景及目标:适用于汽车、航空航天、电子工程等多个领域的复杂工程系统模型测试。主要目标是简化手动配置参数、运行模型、保存结果和对比结果的过程,从而大幅提升工作效率和测试精度。 其他说明:该工具箱的所有代码均为M脚本,完全开源,便于用户根据自身需求进行定制化调整。使用前需预先搭建好Simulink模型和初始化参数文件。
2026-01-28 10:29:03 1.12MB
1
内容概要:本文详细介绍了利用Matlab/Simulink进行空气悬架建模的方法和技术细节。首先,文章阐述了模型的整体架构,包括道路激励生成、空气弹簧子系统、阻尼特性实现、轮胎动力学以及控制器模块。接着,深入探讨了各个子系统的具体实现方法,如用白噪声生成符合ISO标准的道路谱,采用双曲正切函数模拟空气弹簧的非线性刚度变化,以及通过状态方程实现质量块的加速度耦合计算。此外,还提供了模型验证的关键指标和调试技巧,强调了模块化设计的优势,使得模型能够灵活应用于不同的工况和悬架类型。 适合人群:对汽车工程、控制系统设计感兴趣的工程师和研究人员,尤其是有一定Matlab/Simulink基础的技术人员。 使用场景及目标:适用于希望深入了解空气悬架非线性特性和整车动力学仿真的技术人员。通过本模型的学习,可以掌握如何构建复杂的非线性系统,优化悬架性能,提升驾驶舒适性和安全性。 其他说明:文中提供的代码片段和调试建议有助于快速上手并解决常见问题。同时,模型的模块化设计使其易于扩展和修改,支持多种应用场景。
2026-01-27 23:06:35 1.71MB
1
Simulink:registered: Real-Time:trade_mark: 目标支持包提供工具来编译在 Speedgoat 目标计算机上运行的实时应用程序。 支持包包括目标计算机的开发工具和运行时组件。
2026-01-27 18:49:37 6KB matlab
1
标题 "simulink仿真bldc" 涉及的核心技术是使用Simulink来模拟和控制三相无刷直流电机(BLDC)的工作。Simulink是MATLAB的一个扩展工具,专门用于系统级的建模和仿真。在这个场景中,我们主要探讨的是如何构建一个三相逆变器模型来驱动BLDC电机,并实现电机速度控制。 **三相逆变器** 是一种电力电子设备,它可以将直流电转换为交流电,以便驱动如BLDC电机这样的交流负载。在Simulink中,你可以构建一个包含开关元件(如IGBT或MOSFET)的逆变器模型,通过控制这些开关的通断来改变输出电压的相位和幅度,从而控制电机的转速和方向。 **BLDC电机** 是一种高效、可靠且具有高动态响应的电动机,广泛应用于无人机、电动车、工业自动化等领域。其工作原理基于磁场定向控制(FOC),即通过检测电机的磁链位置并调整逆变器的输出来实现精确的电机控制。 在Simulink环境中,**电机控制** 可以分为以下几个关键部分: 1. **传感器模型**:通常包括霍尔效应传感器或旋转变压器,用于检测电机的转子位置和速度。 2. **电机模型**:基于物理定律(如法拉第电磁感应定律)建立电机的数学模型,模拟电机的电气和机械特性。 3. **控制器**:设计PI或PID控制器,根据速度反馈调整逆变器的输出,以达到期望的电机速度。 4. **逆变器模型**:模拟开关元件的开关逻辑,将控制信号转化为电压波形,驱动电机。 **MATLAB Simulink的优势**在于其图形化界面,使得用户可以通过拖拽模块、连接线和设置参数来快速构建复杂的系统模型。此外,Simulink支持实时仿真和硬件在环测试,可以方便地将模型部署到实际硬件上进行验证。 在提供的文件名"BLDC-MOTOR-SPEED-CONTROL-WITH-MATLAB-SIMULINK-master"中,我们可以推测这是一个关于BLDC电机速度控制的完整项目,包含了模型构建、仿真和可能的代码实现。通过这个项目,学习者可以深入理解电机控制系统的各个组件,以及如何利用Simulink进行系统集成和优化。 总结来说,"simulink仿真bldc"涉及到的主要知识点包括:Simulink工具的使用、三相逆变器的建模、BLDC电机的工作原理、电机控制策略(如FOC)、传感器和控制器的设计,以及模型的实时仿真和验证。这些内容对于理解和开发电机控制系统,尤其是新能源和自动化领域的应用,具有很高的实践价值。
2026-01-27 17:05:57 1.08MB simulink
1