QuobileNet
正在进行中的基于MobileNetV2的混合量子经典对象检测器。 当前,它修改了一个简单的自制CNN模型,该模型的经典版本使用数据集中的和9在3类分类问题上达到了99.60%的准确性。 我们用一个量子当量替换了4个卷积层之一:“量子卷积”层。
有关如何运行的更多信息和说明,请参见下文。
介绍
该项目旨在创建流行的物体检测网络的混合模型。 的主要重点是与 (以及可能 )的特征提取主链。 目标是引入量子层并测量各种性能统计数据,例如平均平均精度(mAP)和达到可比的损耗值所需的历元数。
重点关注的主要层是卷积层。 通过对人中引入的原始量子层模型进行修改 和在PennyLane上找到的,构建了一个定制的量子卷积层,该层将任何内核大小和输出层深度作为参数,自动确定所需的正确量子位数,并使用量子输出适当的特征图电路为基础。
当前的计划是用定制的量子卷积层代替Retina
2024-03-07 13:43:54
1.11MB
Python
1