QuobileNet 正在进行中的基于MobileNetV2的混合量子经典对象检测器。 当前,它修改了一个简单的自制CNN模型,该模型的经典版本使用数据集中的和9在3类分类问题上达到了99.60%的准确性。 我们用一个量子当量替换了4个卷积层之一:“量子卷积”层。 有关如何运行的更多信息和说明,请参见下文。 介绍 该项目旨在创建流行的物体检测网络的混合模型。 的主要重点是与 (以及可能 )的特征提取主链。 目标是引入量子层并测量各种性能统计数据,例如平均平均精度(mAP)和达到可比的损耗值所需的历元数。 重点关注的主要层是卷积层。 通过对人中引入的原始量子层模型进行修改 和在PennyLane上找到的,构建了一个定制的量子卷积层,该层将任何内核大小和输出层深度作为参数,自动确定所需的正确量子位数,并使用量子输出适当的特征图电路为基础。 当前的计划是用定制的量子卷积层代替Retina
2024-03-07 13:43:54 1.11MB Python
1
mobilenetV2 网络结构,实测可用,可以详细读懂代码,欢迎下载
2024-01-13 21:29:43 2KB
1
使用pytorch写的mobilenet v2代码,详细注释,可以生成训练集和测试集的损失和准确率的折线图,详细注释了神经网络的搭建过程
2023-09-10 20:02:26 8.06MB pytorch pytorch mobilenetv2
1
DeepLabv3_MobileNetv2 这是MobileNet v2网络的PyTorch实施,具有用于语义分割的DeepLab v3结构。 MobileNetv2的骨干来自纸面: DeepLabv3的段头来自纸面: 如果您对这些块有一些困惑,请参考这些文件,以获取有关诸如Atrous卷积,反向残差,深度卷积或ASPP之类的详细信息。 结果 在训练了150个纪元之后,没有进行任何进一步的调整,测试集上的第一个训练结果如下: 随时更改此仓库中的任何配置或代码:-) 如何使用? 首先,您需要安装此实现的依赖项。 此实现是在Python 3.5下使用以下库编写的: 火炬0.4.0 火炬视觉0.2.1 numpy的1.14.5 OpenCVPython的3.4.1.15 tensorflow 1.8.0(tensorboardX必需) tensorboardX 1.2 使用sudo
2023-01-11 11:23:19 28.94MB pytorch segmentation mobilenetv2 deeplabv3
1
基于Mobilenetv2和mobilenetv3算法实现6种风景识别分类系统完整源码(带数据集和模型及操作说明).zip 【资源说明】 1、实现的有Mobilenetv2和Mobilenetv3网络,模型只有Mobilenetv3训练的,v2模型需自己换下网络自己训练,操作简单。 2、资源附有数据集,有各种评估指标曲线,数据增强脚本、数据增强后的截图等,这些都可以放进课程报告或者毕设LW中。 3、可选择修改各种损失函数(已实现),激活函数,学习率、训练迭代次数、图像输入大小等参数自定义。 4、使用的是pytorch框架。 【备注】 主要针对正在做毕设的同学和需要项目实战的深度学习cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码、训练好的模型、项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。如果基础不错,在此代码上做修改,训练其他模型。
mobilenetv2_deeplabv3_pytorch 注意:最终目的是使用deeplabv3_plus_nv2进行肖像分割! 从,我们可以了解Deeplab v3 +的详细信息()。 提供了四个pre_train模型。 使用Mibilenetv2作为特征exstractor根据(上运行 ),我在给予tensorflow分割演示 。 这些代码是pytorch上的mobiletv2_deeplab_v3的实现。 网络架构 在,使用功能save_graph()将tensorflow图获取到pre_train文件夹,然后运行tensorboard --logdir=pre_train pre_train在浏览器中打开tensorboard: 网络架构主要包含: mobilenetv2 , aspp 。 mobilenetv2 deeplabv3中的mobilenetv2与原始架
2022-11-04 22:51:54 12.74MB pytorch segmentation portrait-matting mobilenetv2
1
在文章与之前编写的图像分类框架构建组合使用,这里只讲述基于chainer的模型构建,本次讲解如何使用chainer构建MobileNetV2网络结构,以及对应的mobilenetv2_0.25,mobilenetv2_0.5,mobilenetv2_0.75,mobilenetv2_1.0等结构
2022-09-20 16:05:22 8KB chainer
1
MobileNetv2 图像分类(DogVsCat)
2022-06-24 09:06:39 11KB Python
1
人工智能-项目实践-图像识别-基于 MobileNetV2 的人脸口罩检测识别 基于 tf.keras 的训练模型 MobileNetV2 搭建一个深度卷积神经网络进行人脸口罩检测识别, 使用 1070Ti 训练 15 个 epoch 准确率达 96%. 环境 Python 3.7 tensorflow 2.2.0 CUDA Version 10.1.243 数据集 数据集全部来自于网络公开数据.
2022-05-23 12:05:50 35.21MB 人工智能 图像识别 MobileNetV2 tensorflow
迁移学习(Transfer Learning):Matlab预训练模型的原始安装程序,用于特征提取、表达、目标识别等诸多任务
2022-05-20 19:44:50 15KB 迁移学习
1