MobileNetV2_pytorch_cifar 这是MobileNetv2在PyTorch中的完整实现,可以在CIFAR10,CIFAR100或您自己的数据集中进行训练。 该网络来自下面的论文 残差和线性瓶颈:用于分类,检测和细分的移动网络 在该网络中,使用了反向残差结构和深度卷积。 请参阅该论文以获取更多详细信息 用法 此项目已编译并在Python 2.7和PyTorch 0.4.0上运行。以下是一些必需的依赖项: torch 0.4.0 torchvision 0.2.1 numpy 1.14.3 tensorboardX 1.2 使用pip首先安装它们 训练与测试 下载CIFAR10或CIFAR100数据集,或准备自己的数据集,如PyTorch中定义的数据加载器 将config.py修改为您自己的配置,例如。 更改image_size或其他 运行python main.py
2021-11-11 20:58:38 13.29MB Python
1
网络 使用MobileNetV2上的转移学习方法在移动环境中进行巩膜分割的U-Net模型 该存储库包含使用Keras和Tensorflow的U-Net架构的实现,其背后支持Tensorflow,以使用转移学习方法对Sclera进行分段。 1-建议的方法 所提出的方法采用了以MobileNetV2类特征为条件的U-Net启发模型来分割眼睛的巩膜和背景,其中对MobileNetV2模型应用了两阶段的微调。 数据通过不同的模型进行了扩充。 在我们的方法中,我们将U-Net [U-Net]与预训练的MobileNetV2 [MobileNetV2]结合使用。 U-Net基于全卷积网络,我们修改了其体系结构以使用较少的训练样本并实现更准确的分段。 我们将MobileNetV2随附的预训练权重用于ImageNet数据集[ImageNet],并在巩膜域上对其进行了微调。 为了提供域适应性,我们根据M(
2021-11-05 16:31:43 9KB Python
1
基于tensorflow架构训练出来的MobileNetV2类型的tflite模型文件
2021-11-01 18:14:59 74.56MB tensorflow MobileNetV2 tflite
1
pytorch yolov3 backbone This project use threshold=0.1 for faster evaluation,while the original implementation use 0.01. Adjust the training schedules(total epochs,lr scheduler) may further boost the performance. I pick StepLR instead of ConsinLR to accelerate training procedure. Continue training may give better results.
2021-10-26 00:00:37 10.21MB mobilenetv2
1
使用深度学习进行图像伪造 使用深度学习的图像伪造检测,在PyTorch中实现。 提议 整个框架:首先,将RGB图像分为重叠的块(64x64)。 然后,在被网络打分之前,将RGB色块转换为YCrCb颜色通道。 最后,设计了一个后期处理阶段,以完善网络的预测,并就图像的身份验证做出最终结论。 深度神经网络改编自MobileNet-V2。 但是,我们修改了原始MobileNet-V2,使其与我们的问题更加相关。 下图描述了体系结构修改。 实验结果 我们已经对模型配置进行了全面评估,以显示哪个因素可以改善模型的最终性能。 为了解决这个问题,我们定义了与MobileNetV2(称为MBN2)一起作为核心的六种配置。 要考虑两个颜色通道,即RGB和YCrCb。 此外,还考虑了三种MobileNetV2架构进行比较。 第一个体系结构是从零开始训练的MobileNetV2,第二个体系结构是通过Image
2021-10-21 23:11:40 121.31MB cnn pytorch deeplearning mobilenetv2
1
MobileNet V2在pytorch中的实现
2021-10-10 12:27:41 40.05MB Python开发-机器学习
1
mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_192_no_top.h5,mobilenetv2 tf.keras预训练模型,可用于迁移学习。
2021-09-09 19:56:25 8.97MB mobilenetv2 迁移学习 imagenet预训练模型
1
pytorch-deeplab-xception 于2018/12/06更新。 提供在VOC和SBD数据集上训练的模型。 于2018/11/24更新。 发布最新版本的代码,该代码可以解决一些以前的问题,并增加对新主干和多GPU培训的支持。 有关以前的代码,请参见上previous分支 去做 支持不同的骨干网 支持VOC,SBD,城市景观和COCO数据集 多GPU训练 骨干 火车/评估系统 价值 预训练模型 ResNet 16/16 78.43% 移动网 16/16 70.81% DRN 16/16 78.87% 介绍 这是的PyTorch(0.4.1)实现。 它可以使用Modified Aligned Xception和ResNet作为主干。 目前,我们使用Pascal VOC 2012,SBD和Cityscapes数据集训练DeepLab V3 Plus。 安装 该代
2021-09-01 15:38:46 559KB pytorch resnet xception mobilenetv2
1
皮托奇·西法尔100 pytorch在cifar100上练习 要求 这是我的实验资料 python3.6 pytorch1.6.0 + cu101 张量板2.2.2(可选) 用法 1.输入目录 $ cd pytorch-cifar100 2.数据集 我将使用来自torchvision的cifar100数据集,因为它更方便,但我还将示例代码保留了用于在数据集文件夹中编写您自己的数据集模块的示例,以作为人们不知道如何编写它的示例。 3.运行tensorbard(可选) 安装张量板 $ pip install tensorboard $ mkdir runs Run tensorboard
1
mobilenetv2预训练模型(keras版的imagenet预训练模型),no_top版本,一般用于迁移学习。
1