本项目基于C4.5决策树算法实现对莺尾花的分类识别。考虑到,花萼长度、花萼宽度、花瓣长度、花瓣宽度均为连续变量,所以需要进行离散化处理;这里通过Gini Index来进行离散化处理,考虑到此次分三类,且通过上面的可视化,三种花在4个属性上分布均存在较大差异,所以对花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性均采用两个分界点来分成三类。 max_depth = 2 训练集上的准确率:0.964 测试集上的准确率:0.895 max_depth = 3 训练集上的准确率:0.982 测试集上的准确率:0.974 max_depth = 4 训练集上的准确率:1.000 测试集上的准确率:0.974
2023-12-18 09:50:50 256KB 机器学习
1
python实现决策树(C4.5算法),使用西瓜数据集,参考《机器学习》和统计学习方法实现决策树算法。
2023-04-04 21:57:06 12KB C4.5 决策树 python 机器学习
1
准确认定贫困生资格,是高校公平、公正、合理分配国家资助资源的先决条件.将数据挖掘的决策树方法引入高校贫困生资格认证分析中,利用C4.5算法创建决策树,挖掘学生信息和贫困种类关系的历史数据,建立学生信息―贫困种类智能评价模型.通过实验仿真发现,C4.5决策树算法取得了较为理想的分类预测效果.
2023-03-03 18:54:20 590KB 自然科学 论文
1
ID3,C4.5决策树完整代码以及结果图片
2023-02-22 23:30:02 94KB 决策树 算法 机器学习 人工智能
1
通过研究各种决策树分类算法的并行方案后,并行设计C4.5算法。同时根据Hadoop云平台的MapReduce编程模型,详细描述C4.5并行算法在MapReduce编程模型下的实现及其执行流程。最后,对输入的海量文本数据进行分类,验证了算法的高效性和扩展性。
2022-12-16 17:20:38 279KB 云计算
1
C4.5算法使用信息增益率来代替ID3的信息增益进行特征的选择,克服了信息增益选择特征时偏向于特征值个数较多的不足。信息增益率的定义如下: # -*- coding: utf-8 -*- from numpy import * import math import copy import cPickle as pickle class C45DTree(object): def __init__(self): # 构造方法 self.tree = {} # 生成树 self.dataSet = [] # 数据集 self.labels = [] # 标签集 # 数据导入
2022-11-10 10:16:14 85KB python python函数 python算法
1
C4.5 决策树算法源码。C4.5决策树是决策树领域的经典算法。以其为内容的书籍引用率已经达到一万次以上
2022-09-16 22:28:01 2KB c4.5 c4.5_matlab tree+matlab 决策树c4.5
支持向量机作为非参数方法已经广泛应用于信用评估领域.为克服其训练高维数据不能主动进行特征选择导致准确率下降的缺点,构建C4.5决策树优化支持向量机的信用评估模型.利用C4.5信息熵增益率方法进行属性选择,减少冗余属性.模型通过网格搜索确定最优参数,使用F-score和平均准确率评价模型性能,并在两组公开数据集上进行验证.实证分析表明,C4.5决策树优化支持向量机的信用评估模型有效减少了数据学习量,较于传统各类单一模型有较高的分类准确率和实用性.
1
python利用c4.5决策树对鸢尾花卉数据集进行分类(iris),包含可视化的决策树表
2022-05-27 21:05:40 102.55MB python 决策树 分类 文档资料
1
决策树C4.5的实现,可以在VS2013上运行的!
2022-05-07 13:44:25 4.66MB C4.5决策树
1