Softmax回归模型(matlab代码)

上传者: u014598501 | 上传时间: 2019-12-21 21:30:49 | 文件大小: 11.14MB | 文件类型: zip
softmax回归模型是一种常用的分类器,也是与深度结构模型相结合最多的分类方法。本代码包中的程序对图像构建softmax分类器,并按照图像所属类别进行分类。程序是在matlab平台上实现的,简单易懂。

文件下载

资源详情

[{"title":"( 57 个子文件 11.14MB ) Softmax回归模型(matlab代码)","children":[{"title":"softmax_exercise","children":[{"title":"t10k-images.idx3-ubyte <span style='color:#111;'> 7.48MB </span>","children":null,"spread":false},{"title":"computeNumericalGradient.m <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false},{"title":"loadMNISTImages.m <span style='color:#111;'> 811B </span>","children":null,"spread":false},{"title":"train-images.idx3-ubyte <span style='color:#111;'> 44.86MB </span>","children":null,"spread":false},{"title":"loadMNISTLabels.m <span style='color:#111;'> 516B </span>","children":null,"spread":false},{"title":"t10k-labels.idx1-ubyte <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"softmaxTrain.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"train-labels.idx1-ubyte <span style='color:#111;'> 58.60KB </span>","children":null,"spread":false},{"title":"softmaxCost.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"minFunc","children":[{"title":"lbfgsC.mexmac <span style='color:#111;'> 9.28KB </span>","children":null,"spread":false},{"title":"lbfgsUpdate.m <span style='color:#111;'> 614B </span>","children":null,"spread":false},{"title":"autoHess.m <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"minFunc_processInputOptions.m <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"mcholC.mexw64 <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"ArmijoBacktrack.m <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"conjGrad.m <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"example_minFunc_LR.m <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"precondDiag.m <span style='color:#111;'> 42B </span>","children":null,"spread":false},{"title":"lbfgsC.mexw32 <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"autoHv.m <span style='color:#111;'> 317B </span>","children":null,"spread":false},{"title":"autoGrad.m <span style='color:#111;'> 807B </span>","children":null,"spread":false},{"title":"lbfgsC.mexmaci <span style='color:#111;'> 12.36KB </span>","children":null,"spread":false},{"title":"lbfgsC.c <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"mcholC.mexw32 <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"precondTriuDiag.m <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"autoTensor.m <span style='color:#111;'> 870B </span>","children":null,"spread":false},{"title":"lbfgsC.mexa64 <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"precondTriu.m <span style='color:#111;'> 51B </span>","children":null,"spread":false},{"title":"lbfgsC.mexw64 <span style='color:#111;'> 9.50KB </span>","children":null,"spread":false},{"title":"callOutput.m <span style='color:#111;'> 385B </span>","children":null,"spread":false},{"title":"WolfeLineSearch.m <span style='color:#111;'> 11.21KB </span>","children":null,"spread":false},{"title":"rosenbrock.m <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"lbfgs.m <span style='color:#111;'> 924B </span>","children":null,"spread":false},{"title":"dampedUpdate.m <span style='color:#111;'> 995B </span>","children":null,"spread":false},{"title":"mcholC.mexmaci64 <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"minFunc.m <span style='color:#111;'> 42.61KB </span>","children":null,"spread":false},{"title":"logistic","children":[{"title":"mylogsumexp.m <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"mexutil.c <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"LogisticLoss.m <span style='color:#111;'> 659B </span>","children":null,"spread":false},{"title":"repmatC.dll <span style='color:#111;'> 7.50KB </span>","children":null,"spread":false},{"title":"LogisticHv.m <span style='color:#111;'> 216B </span>","children":null,"spread":false},{"title":"repmatC.mexmac <span style='color:#111;'> 9.77KB </span>","children":null,"spread":false},{"title":"LogisticDiagPrecond.m <span style='color:#111;'> 417B </span>","children":null,"spread":false},{"title":"repmatC.c <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"mexutil.h <span style='color:#111;'> 317B </span>","children":null,"spread":false},{"title":"repmatC.mexglx <span style='color:#111;'> 20.20KB </span>","children":null,"spread":false}],"spread":false},{"title":"lbfgsC.mexmaci64 <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"mcholinc.m <span style='color:#111;'> 564B </span>","children":null,"spread":false},{"title":"lbfgsC.mexglx <span style='color:#111;'> 7.55KB </span>","children":null,"spread":false},{"title":"isLegal.m <span style='color:#111;'> 107B </span>","children":null,"spread":false},{"title":"taylorModel.m <span style='color:#111;'> 677B </span>","children":null,"spread":false},{"title":"example_minFunc.m <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"polyinterp.m <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"mchol.m <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"mcholC.c <span style='color:#111;'> 4.09KB </span>","children":null,"spread":false}],"spread":false},{"title":"Mysoftmax_classifier.m <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"softmaxPredict.m <span style='color:#111;'> 936B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • u011905515 :
    还不是很会用,不过感谢了。
    2018-03-26
  • 连天决 :
    还不是很会用,不过感谢了。
    2018-03-26
  • anooyman :
    还没有,没有看
    2017-10-24
  • Anooyman :
    还没有,没有看
    2017-10-24
  • hxy19890708 :
    还不是很会用,不过感谢了。
    2016-05-04
  • 我来学习的哈 :
    还不是很会用,不过感谢了。
    2016-05-04

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明