一个通过网站更新WINFORM程序的DEMO 目录说明 autoUpdate 自动升级程序 ExceTransforCsv 主程序 Update 升级支持类 UpdateWeb 用于支持升级的网站程序(单独) 1、先用UpdateWeb 部署好网站。记住网站IP。 2、修改Update下SoftUpdate.cs的http://localhost:18222/WebSite/UpdateFile/update.xml地址为你网站地址。 3、把主程序的ExceTransforCsv\bin\Debug的文件压缩成ZIP文件,文件名为Update_autoUpdate,也可以改update.xml中下载文件的文件名。 4、这一点比较重要,更新机制是根据update.xml中的1.0.0.3和Name="ExceTransforCsv"进行比对是否下载。如果主程序下Properties/AssemblyInfo.cs的版本小于网站update.xml上的版本,则需下载。高于或等于都不会下载。可以调整update.xml1.0.0
2024-12-07 16:44:08 3.15MB 网络协议
1
Agt3Tool.exe
2024-12-06 10:14:15 2.68MB 网络协议
1
时间敏感网络(Time-Sensitive Networking,简称TSN)是一种网络技术,主要针对实时性、低延迟和高可靠性有严格要求的应用场景,如工业自动化、音频视频流传输、汽车网络以及航空航天等。TSN是建立在IEEE 802.1标准框架下的一系列子标准,旨在确保网络数据传输的精确性和一致性。 IEEE 802.1Q标准是TSN的核心部分之一,它定义了虚拟局域网(VLAN)桥接协议。在2014年修订的IEEE Std 802.1Q-2014版本中,对原有的2011版进行了更新,以适应不断发展的网络需求。该标准不仅规范了VLAN桥接的基本功能,还涵盖了TSN的关键特性,如时间同步、流量调度、优先级队列和帧间间隔控制等。 1. **时间同步**:TSN网络中的设备需要精确的时间同步,以确保数据在预定的时间点准确传输。这通过IEEE 802.1AS(通用精确时间协议,Generalized Precision Time Protocol)实现,允许网络设备与一个全局参考时钟进行同步,从而达到微秒级的精度。 2. **流量调度**:TSN引入了复杂的流量控制策略,如IEEE 802.1Qbv(时间感知调度,Time-Aware Shaper),确保关键数据包能够在指定的时间窗口内优先传输,保证服务质量(QoS)。 3. **优先级队列**:利用IEEE 802.1P的优先级标记,TSN能够为不同类型的流量分配不同的优先级,确保高优先级的数据包不被低优先级的数据包阻塞。 4. **帧间间隔控制**:IEEE 802.1Qci(帧间隔控制,Frame Spacing Control)规定了帧之间的最小间隔,防止数据包碰撞,确保数据流的连续性和稳定性。 5. **故障恢复和冗余**:TSN还包含了故障检测和快速恢复机制,如IEEE 802.1CB(帧重复,Frame Replication and Elimination)和802.1Qcc(协作桥接,Coordinated Switching),以提高网络的可靠性。 6. **管理与配置**:TSN网络的管理和配置通常依赖于IEEE 802.1CBRS(集中式带宽资源管理,Centralized Bandwidth Resource Scheduling)和802.1Qcc,确保网络资源的有效分配和动态调整。 TSN的这些特性使得它在实时应用中具有显著优势,能够提供传统以太网所无法比拟的性能。随着物联网(IoT)、5G通信和自动化技术的发展,TSN有望在未来的工业和消费市场中发挥越来越重要的作用。
2024-12-05 14:00:28 18.46MB 网络 网络
1
一. 实验目的 1、加深理解TCP报文结构 2、领会TCP协议通信机制 3、通过跟踪TCP应用通信,能结合报文对整个通信过程进行分析。 二. 实验环境 1、头歌基于Linux的虚拟机桌面系统 2、网络报文分析工具wireshark 3、浏览器firefox • 源端口( 16 位):通信发送方使用的端口号 • 目标端口( 16 位):通信接收方使用的端口号 • 序列号( 32 位):用来确保数据可靠传输的唯一值 • 确认号( 32 位):接收方在响应时发送的数值 • 数据偏移( 4 位):标志数据包开始的位置,TCP 头部的长度 • SYN:(同步)发起连接的数据包:同步 SYN=1 表示这是一个连接请求或连接接受报文。 • ACK:(确认)确认收到的数据包:只有当 ACK=1 时,确认号字段才有效;当 ACK=0 时,确认号无效。 • RST:(重置)之前尝试的连接被关闭,(信号差,信号拥挤):当 RST=1 时,表明 TCP 连接中出现严重差错(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立运输连接。 • FIN:(结束)连接成功,传输完毕之后,连接正在断开: 计算机网络实验4主要聚焦于TCP和UDP协议的分析,旨在帮助学生深入理解TCP报文的结构和通信机制。实验中,学生将利用头歌Linux虚拟机桌面系统、网络报文分析工具Wireshark以及Firefox浏览器来追踪和分析TCP应用的通信过程。 TCP(Transmission Control Protocol)是一种面向连接的、可靠的、基于字节流的传输层通信协议。TCP报文头部包含多个关键字段,每个字段都有特定的作用: 1. **源端口和目标端口**:16位的源端口和目标端口分别标识发送和接收数据的进程。 2. **序列号**:32位的序列号用于确保数据的有序传输,每个字节的数据都有唯一的序列号。 3. **确认号**:接收方在响应时会发送一个32位的确认号,表示已接收的数据序列号。 4. **数据偏移**:4位的数据偏移指示TCP头部的长度,帮助定位数据部分的起始位置。 5. **标志字段**:包括SYN、ACK、RST、FIN等,用于控制TCP连接的状态和数据传输。 - SYN(同步):在建立连接时设置为1,表示连接请求或连接接受。 - ACK(确认):确认收到的数据,只有当ACK=1时,确认号才有效。 - RST(重置):用于表示连接错误,如主机崩溃,需要释放连接并重新建立。 - FIN(结束):表示数据传输完成,请求断开连接。 此外,TCP头部还有其他字段,如PSH(推送)、URG(紧急)、窗口大小、校验和和紧急指针等,分别用于数据的快速交付、紧急数据处理、流量控制和数据完整性检查。 TCP连接的建立是通过著名的“三次握手”过程: 1. 客户端发送带有SYN标志的TCP报文,初始化序列号。 2. 服务器响应,同时设置SYN和ACK标志,确认客户端的序列号,并分配自己的序列号。 3. 客户端再次回应,确认服务器的序列号,至此连接建立。 而TCP连接的关闭是“四次挥手”: 1. 主动关闭方发送FIN,表示不再发送数据。 2. 被动关闭方确认收到FIN,继续发送未完成的数据。 3. 被动关闭方发送FIN,表示数据传输完毕。 4. 主动关闭方确认收到FIN,连接完全关闭。 这个实验让学生亲手操作,通过Wireshark抓取和分析TCP报文,能够直观地理解TCP协议的工作原理,提高对网络通信的理解。
2024-12-03 21:09:34 3.29MB 网络 网络 网络协议
1
在本文中,我们将深入探讨基于Zynq的TCP客户端实现,特别是关注断线重连功能。Zynq是Xilinx公司的可编程系统芯片(PSoC),它集成了ARM Cortex-A9双核处理器和FPGA逻辑,使得硬件和软件的灵活结合成为可能。TCP(传输控制协议)是一种面向连接的、可靠的、基于字节流的传输层通信协议,广泛应用于互联网通信。本文将围绕如何在Zynq平台上构建一个能够处理网络中断并自动重连的TCP客户端SDK工程源码进行阐述。 我们要理解TCP客户端的基本工作原理。TCP客户端通过三次握手建立与服务器的连接,然后可以发送和接收数据。当网络出现问题导致连接中断时,TCP客户端需要检测到这个状态,并采取措施尝试重新连接。这通常涉及到心跳机制和超时重传策略。 在Zynq平台上实现TCP客户端,我们首先需要设置合适的TCP/IP堆栈。Xilinx提供了Vivado SDK(Software Development Kit),其中包含了用于网络应用开发的工具和库。开发者可以在C或C++中编写应用程序,利用SDK提供的网络库来处理TCP连接。 1. **心跳机制**:心跳包是维持TCP连接活跃的一种方法。客户端定时发送心跳包到服务器,如果服务器在指定时间内没有收到心跳包,就会认为连接已断开。同样,如果服务器未在预设时间内响应心跳包,客户端也会判断连接异常。心跳机制可以提前发现网络问题,避免数据丢失。 2. **超时重传策略**:当TCP数据段在网络中丢失或者延迟过大时,客户端需要有超时重传的机制。在Zynq SDK中,可以通过设置TCP重传超时(RTO)参数来实现。当超过这个时间未收到确认,客户端会重新发送数据。 3. **断线检测**:客户端需要监测TCP连接的状态,例如通过检测接收窗口的大小变化,或者监听TCP的FIN/ACK标志位。一旦检测到异常,立即启动重连过程。 4. **重连流程**:断线后,客户端首先需要关闭当前的TCP连接,清理相关资源。然后,按照正常的TCP连接流程重新发起连接请求,包括三次握手。在重试期间,可以设置重试次数和间隔时间,以防止过快的重试导致网络拥塞。 5. **错误处理和恢复**:在SDK工程源码中,应包含适当的错误处理代码,以便在重连失败时通知用户或采取其他恢复措施。这可能包括记录日志、显示错误消息,甚至尝试切换到备用服务器。 6. **源码结构**:在提供的"client"文件夹中,可能包含以下组件:主程序文件(如`main.c`或`main.cpp`)、TCP连接相关的函数库(如`tcp_connection.c/h`)、配置文件(如`config.h`)以及可能的测试脚本或Makefile。源码应清晰地组织和注释,以便理解和维护。 构建一个能够在Zynq平台上实现断线重连功能的TCP客户端SDK工程,需要对TCP协议、网络编程、Zynq硬件平台以及Vivado SDK有深入的理解。通过合理的心跳机制、超时策略和错误处理,可以确保客户端在面对网络不稳定时保持连接的可靠性。
2024-11-21 16:50:23 713KB 网络协议 zynq client
1
2024年付费进群最新修复版 nginx1.2 php5.6--7.2均可最好是7.2 第一步:上传文件程序到网站根目录解压 第二步:导入数据库(shujuku.sql) 第三步:修改/config/database.php里面的数据库地址 第四步:修改/config/extra/ip.php里面的域名 第四步:设置伪静态thinkphp location ~* (runtime|application)/{ return 403; } location / { if (!-e $request_filename){ rewrite ^(.*)$ /index.php?s=$1 last; break; } } 总后台账号:18888888888 总后台密码:123456 分销后台:http://域名/fenxiao.php 分站后台:http://域名/substation.php 功能使用说明,每个功能旁边都会有示例截图
2024-11-10 22:37:09 30.52MB 网络协议
1
Unity是一款强大的跨平台游戏开发引擎,它支持多种网络通信协议,其中包括UDP(用户数据报协议)。UDP是一种无连接的、不可靠的传输协议,适用于实时性要求高的应用场景,如在线游戏和视频流等。本教程将详细介绍Unity中实现UDP服务端和客户端的代码。 在Unity中,我们通常会使用C#语言编写网络相关的脚本。在提供的文件列表中,有两个关键脚本:`UdpClient.cs` 和 `UdpServer.cs`。它们分别对应UDP服务端和客户端的核心逻辑。 1. **UdpClient.cs**: - 这个脚本用于创建一个UDP客户端,它首先需要初始化一个`UdpClient`对象,用于发送和接收数据报文。 - `Initialize()` 方法通常用于设置目标服务器的IP地址和端口号,并启动监听。 - `SendData()` 方法用于封装数据到`Byte[]`数组,并通过`UdpClient.Send()`方法发送到服务器。 - `ReceiveData()` 方法会调用`UdpClient.Receive()`来接收来自服务器的数据,这个操作是阻塞式的,意味着直到有数据到达才会返回。 - `Close()` 方法用于关闭UDP连接,释放资源。 2. **UdpServer.cs**: - UDP服务端的脚本,主要任务是监听来自客户端的数据并进行响应。 - `StartListening()` 方法会设置一个`UdpClient`实例来监听特定端口的传入数据。 - `ReceiveCallback(IPEndPoint remoteEP, Byte[] bytes)` 是一个回调函数,当接收到数据时被调用,它包含客户端的IP端点信息和接收到的数据。 - `SendResponse()` 方法处理接收到的数据并构造回应数据,然后使用`UdpClient.Send()`将数据回发给客户端。 - `StopListening()` 方法用于停止服务器的监听,通常在不再需要服务时调用。 3. **网络协议**: - UDP协议不保证数据的顺序、可靠性和无重复,因此在使用UDP时,开发者需要自己处理这些问题。 - 在Unity中,我们可以使用`System.Net.Sockets`命名空间下的`UdpClient`类来实现UDP通信。 4. **软件/插件**: - Unity没有内置的网络系统,但提供了基本的API来实现网络功能。开发者可以使用这些API自行编写网络代码,或者使用第三方插件如UNet、Mirror等简化网络编程。 理解这两个脚本的工作原理对于构建基于UDP的Unity应用至关重要。在实际项目中,你可能需要根据具体需求对这些基础脚本进行扩展,例如添加错误处理、数据包序列化和反序列化、多线程优化等功能。同时,为了确保数据的正确性,你可能还需要设计一套自己的消息系统,包括消息ID、消息类型和数据校验机制。
2024-11-05 14:59:53 3KB unity 网络协议
1
QT框架是Qt公司开发的一种跨平台应用程序开发框架,它提供了丰富的API和工具,使得开发者能够构建功能强大的桌面、移动和嵌入式应用。在QT框架下实现基于TCP协议的多线程文件传输系统,可以充分利用多核处理器的性能,提高文件传输效率。以下是关于这个主题的详细知识点: 1. **QT框架基础**: - QT框架是用C++编写的,支持Windows、Linux、macOS、Android、iOS等多个操作系统。 - Qt库包含了图形用户界面(GUI)组件、网络编程、数据库访问、多媒体处理、XML解析等功能。 - 主要组件包括:QWidget(基本UI元素),QApplication(应用管理),QMainWindow(主窗口),QThread(线程管理)等。 2. **TCP协议**: - TCP(Transmission Control Protocol)是一种面向连接的、可靠的传输协议,它通过三次握手建立连接,保证数据的有序无损传输。 - TCP提供全双工通信,数据传输过程中有确认机制、流量控制和拥塞控制。 - 在QT框架中,可以使用QTcpServer和QTcpSocket类来实现TCP通信。 3. **QT中的网络编程**: - `QTcpServer`用于监听客户端连接请求,一旦有新的连接,会调用指定的槽函数处理。 - `QTcpSocket`代表一个TCP连接,负责数据的发送和接收。可以使用write()函数发送数据,read()或readLine()函数接收数据。 4. **多线程编程**: - 在QT中,`QThread`类允许创建并管理单独的执行线程。每个线程有自己的事件循环,可以独立处理任务。 - 使用多线程处理文件传输,可以避免单线程在大文件传输时阻塞UI,提高用户体验。 - 通常,服务器端在一个线程中处理多个客户端连接,而每个客户端连接可以在单独的线程中处理。 5. **文件传输实现**: - 文件传输通常涉及读取本地文件(如使用QFile类)和将文件内容写入网络流(QTcpSocket的write())。 - 为了确保数据完整,可以使用固定大小的缓冲区进行分块传输,并在每块数据后附加校验和。 - 客户端收到数据后,也需要使用相同的方法验证数据完整性,并写入本地文件。 6. **错误处理与连接管理**: - 在文件传输过程中,需要处理可能发生的网络中断、超时等问题。可以设置信号和槽来捕获这些异常并采取相应措施。 - 关闭连接时,确保所有的数据已发送并确认,然后调用QTcpSocket的disconnectFromHost()或close()方法。 7. **欢迎文档(welcome.txt)**: 这个文档可能包含项目简介、使用说明、版权信息等内容,为用户提供初步的指引。 8. **源代码(socket_qt.zip)**: 这个压缩包可能包含实现上述功能的QT项目源代码,包括服务器端和客户端的代码。用户可以通过研究这些代码来学习如何在QT中实现TCP文件传输。 QT框架下的TCP多线程文件传输系统结合了QT的强大功能和TCP的可靠性,提供了一种高效、稳定的数据交换方式。通过学习和实践这样的系统,开发者可以提升在网络编程和多线程应用开发方面的技能。
2024-11-03 23:57:25 41.67MB 网络协议 学习资料
1
在本项目中,我们关注的是一个使用C#编程语言开发的安捷伦程控电源66319BD-66321BD的演示程序。这个程序的主要目的是通过网络协议,如GPIB(通用接口总线)和TCP串口,实现对安捷伦电源的远程控制和通信。下面我们将深入探讨相关的知识点。 1. **C#编程语言**:C#是微软开发的一种面向对象的编程语言,广泛应用于Windows平台上的应用开发,包括桌面应用、游戏开发以及近年来的.NET框架中的Web服务和移动应用。在这个项目中,C#被用于编写与电源设备交互的软件,利用其强大的类库和易于理解的语法结构。 2. **安捷伦程控电源**:安捷伦科技(现 Keysight Technologies)是全球领先的测试测量公司,其电源产品广泛应用于实验室、研发和生产环境。66319BD-66321BD系列是高性能的直流电源,提供精确的电压和电流输出,可进行复杂的电源管理任务。程控电源可以通过编程接口进行控制,以实现自动化测试和测量。 3. **GPIB(通用接口总线)**:GPIB是一种标准的接口技术,常用于科学仪器间的通信,如在实验室环境中连接电源、示波器、信号发生器等。它允许设备间的数据传输,并实现对多个设备的同步控制。C#程序通过GPIB库可以发送命令到安捷伦电源,实现远程开关、设置电压/电流值等功能。 4. **TCP串口通信**:TCP(传输控制协议)是Internet协议的一部分,用于在网络设备之间建立可靠的数据传输。串口通信则是通过串行端口进行数据交换,常见于嵌入式系统和硬件设备。在这个项目中,TCP串口通信为C#应用程序提供了一种与电源设备进行数据交互的途径。 5. **软件/插件开发**:这里的"软件/插件"可能指的是开发的C#程序作为一个独立的应用或作为现有软件的扩展(插件)。开发者可能设计了一个用户友好的界面,允许用户输入参数并发送控制命令到电源设备。 6. **网络协议**:网络协议定义了设备间通信的规则。在这个项目中,GPIB和TCP都属于网络协议,它们确保了C#程序和安捷伦电源之间的通信有效、可靠。 7. **NI(National Instruments)**:这可能是文件列表中提到的一个关键词,可能意味着该项目使用了National Instruments的相关产品,如LabVIEW、NI GPIB驱动程序等。National Instruments是一家提供虚拟仪器软件和硬件解决方案的公司,常用于测试测量和控制系统。 这个项目展示了如何使用C#编程语言,结合GPIB和TCP串口通信协议,来控制安捷伦的程控电源,实现远程操作和自动化测试。开发者可能还利用了National Instruments的工具,以增强其软件的功能和兼容性。这样的工作对于科研、教育和工业生产环境都非常有价值,因为它可以提高测试效率,减少人工干预,并确保测试结果的一致性和准确性。
2024-10-30 14:39:29 459KB 网络协议
1
标题中的“IP地址检测工具Scanner”是指一种软件应用,专门设计用于扫描并识别局域网内的IP地址。这种工具在IT管理、网络安全和故障排查中非常有用,它可以帮助用户快速定位网络上的设备,检查网络连接状况,或者进行安全审计。 描述中提到的“Advanced_IP_Scanner_2.5.4594.1.exe”和“局域网IP地址检测工具.exe”是两种可能的IP地址扫描工具的实例。"Advanced_IP_Scanner"是一款流行的免费IP扫描器,它能够发现网络上的所有活动设备,提供远程控制功能,并显示设备的MAC地址、共享资源等信息。版本号“2.5.4594.1”表明这是该软件的一个具体版本,通常包含开发者针对性能和功能的改进。而“局域网IP地址检测工具.exe”可能是另一款类似的应用,专为检测局域网内的IP地址而设计。 “网络协议”标签提示我们,这些工具的工作原理基于网络通信的基本规则,如TCP/IP协议族。它们通过发送探测数据包到网络,并分析返回的响应来确定哪些设备正在运行,以及它们的IP地址。TCP/IP协议家族包括了IP(互联网协议)、ICMP(因特网控制消息协议)、TCP(传输控制协议)和UDP(用户数据报协议)等,这些协议在IP地址检测中起着关键作用。 在使用IP地址检测工具时,用户可以执行以下操作: 1. **网络设备发现**:扫描局域网内的所有设备,获取它们的IP地址、主机名、MAC地址等信息。 2. **状态监测**:检查设备是否在线,网络连接是否正常。 3. **共享资源查找**:找出网络上共享的打印机、文件夹等资源。 4. **安全评估**:通过识别未经授权的设备或服务,评估网络的安全性。 5. **故障排除**:当网络连接出现问题时,可以快速定位故障设备。 压缩包子文件“IP地址检测工具Scanner”可能包含该工具的安装程序、使用手册、配置文件等相关资料。用户在使用前应先解压,然后按照指示安装和配置工具,以便在自己的网络环境中进行IP地址的扫描和管理。 IP地址检测工具是网络管理员和普通用户手中的一把利器,它简化了网络设备的管理和监控,同时也为网络安全性提供了基础保障。通过理解这些工具的工作原理和功能,用户可以更有效地管理和维护自己的网络环境。
2024-10-23 15:10:04 19.86MB 网络协议
1