【聚类算法】聚类分析是数据挖掘的关键技术之一,主要目标是将相似的数据划分到同一类别中,形成不同的簇。这种技术广泛应用于各种领域,包括商务决策、生物学研究、文档分类、图像处理等,帮助人们发现数据的内在结构和规律。 【K-means算法】K-means是最为常见的聚类算法,属于基于划分的方法。它假设数据分布是凸的,每个簇由一个中心点代表,通过迭代优化来不断调整簇的分配和中心点的位置。K-means算法的优点在于计算效率高,适合处理大规模数据集,但缺点是对初始中心点的选择敏感,且对非凸形状的簇识别能力有限。 【聚类算法的分类】聚类算法大致可以分为以下几类: 1. 基于划分的方法:如K-means,将数据集划分为预先设定数量的簇。 2. 基于层次的方法:如层次聚类,通过构建层次结构来形成簇。 3. 基于密度的方法:如DBSCAN,寻找高密度区域来定义簇。 4. 基于网格的方法:如STING,通过在数据空间构建网格来实现聚类。 5. 基于模型的方法:如GMM(高斯混合模型),假设数据簇符合特定的概率分布。 6. 模糊聚类:允许数据点同时属于多个簇。 【K-means改进算法】为了克服K-means的局限性,学者们提出了一系列改进策略。这些改进可能涉及初始化策略(如K-means++)、动态调整簇的数量、考虑数据的异常值处理、引入更灵活的距离度量等。改进算法旨在提高聚类的质量,增强对噪声和不规则形状簇的适应性。 【教学质量评估】聚类算法在教学质量评估体系中的应用,可以通过分析学生、教师、课程等多维度的数据,找出影响教学效果的主要和次要因素。例如,通过聚类可以识别出教学方法、教师教学风格等因素对学生学习成绩的影响程度,从而为教学改革提供依据。 【论文结构】该论文首先介绍了聚类算法的研究背景和意义,以及国内外的研究现状。然后详细阐述了数据挖掘和聚类分析的基本概念、功能、步骤和典型算法。重点讨论了K-means算法及其改进方法,并对比分析了它们的性能。论文探讨了聚类算法在教学质量评估中的具体应用,分析了聚类结果并提出了相应的结论。 综上,聚类算法是数据挖掘中的核心技术,K-means作为其代表性算法有着广泛的应用,但也有其局限性。通过改进和优化,聚类算法可以在更多实际问题中发挥重要作用,如教学质量评估,进一步提升数据分析的精准度和实用性。
2025-05-11 16:09:41 296KB 聚类算法
1
K-means算法论文 K-means算法是一种广泛使用的动态聚类算法,它将各个聚类子集内的所有数据样本的均值作为该聚类的代表点。该算法的主要思想是将数据样本分配到离其最近的聚类中心,直到聚类中心不再改变为止。 1. K-means算法的定义 K-means算法是一种无监督学习算法,它可以将数据样本分配到K个聚类中,K是事先确定的参数。该算法的目标是找到一个最佳的聚类方式,使得每个聚类中数据样本的相似度最大。 2. K-means算法的步骤 K-means算法的主要步骤可以分为以下几个部分: * 初始化:选择K个初始聚类中心,通常可以随机选择或使用.heuristic方法选择。 * 分配:将每个数据样本分配到离其最近的聚类中心。 * 更新:更新每个聚类中心的位置,使其更加接近该聚类中的数据样本。 * 重复:重复上述步骤,直到聚类中心不再改变为止。 3. K-means算法的优缺点 K-means算法的优点包括: * 简单易实现:K-means算法的实现非常简单,可以使用多种编程语言实现。 * 高效率:K-means算法的计算效率非常高,可以快速处理大量数据。 * 可扩展性强:K-means算法可以处理高维数据,可以应用于多种领域。 然而,K-means算法也存在一些缺点: *asily affected by outliers:K-means算法对离群值非常敏感,可能会受到离群值的影响。 * K的选择:K-means算法的性能非常依赖于K的选择,选择不当可能会影响算法的性能。 4. K-means算法的改进 为了克服K-means算法的缺点,人们提出了许多改进方法,包括: * 使用核函数:使用核函数可以使K-means算法更好地适应非线性数据。 * 使用多种距离度量:使用多种距离度量可以使K-means算法更好地适应不同类型的数据。 * 使用Hierarchical Clustering:使用层次聚类方法可以使K-means算法更好地适应高维数据。 5. K-means算法的应用 K-means算法在很多领域都有广泛的应用,包括: * 图像处理:K-means算法可以用于图像分割、图像压缩等。 * 数据挖掘:K-means算法可以用于数据挖掘、数据分析等。 * Recommender System:K-means算法可以用于推荐系统的构建。 K-means算法是一种广泛使用的动态聚类算法,它可以将数据样本分配到K个聚类中。该算法的优点包括简单易实现、高效率、可扩展性强,但也存在一些缺点,如易受离群值的影响、K的选择对性能的影响。为了克服这些缺点,人们提出了许多改进方法,K-means算法也在很多领域都有广泛的应用。
2025-05-11 16:06:35 1.61MB Kmeans算法 k均值算法 聚类算法
1
推荐系统是互联网技术领域的一个重要分支,它通过对用户历史行为数据的分析,预测用户可能喜欢或需要的物品,从而为用户在海量信息中做出选择提供参考。传统的推荐系统通常基于用户或物品的相似性来进行推荐,尽管这种基于相似性的方法在推荐准确性方面表现不俗,但它们往往忽视了推荐的多样性问题。推荐系统的多样性指的是推荐物品覆盖的范围广度,即推荐的物品应该覆盖用户兴趣的不同方面,而不是仅仅集中在用户已有偏好的相似物品上。在实际应用中,推荐系统面临着这样一个挑战:在提高推荐准确性的同时,如何保证推荐结果的多样性。 基于图的推荐算法是一种解决这一挑战的有效方法。这种算法通常以用户-物品互动数据为基础构建一个图模型,其中节点代表用户或物品,边则代表用户与物品之间的互动关系。通过分析图模型上的热传导或者物质传播过程,图算法能够捕捉到用户间及物品间的复杂关系,从而进行有效的推荐。其中,热传导模型模仿了热量在物理介质中的传播过程,通过图中的边将“热能”从一个节点传递到另一个节点。物质传播模型则类似于流体在多孔介质中的传播,通过对图中节点的染色和扩散过程来完成推荐。这些模型能够兼顾推荐的多样性和准确性,因为它们能够考虑到用户之间复杂的互动关系,并且可以通过调整算法中的参数来平衡推荐结果的多样性和准确性。 在解决推荐系统中的多样性与准确性这一看似矛盾的问题时,学者们提出了混合算法的概念。混合算法将基于多样性的推荐算法与以准确性为主的算法结合起来,通过适当调整混合比例,可以在不依赖于任何语义或上下文信息的情况下同时获得推荐的多样性和准确性。 论文中提到的“热传导”和“物质传播”是两种典型的基于图的推荐算法模型。热传导模型以物理中的热传导理论为基础,通过图中节点间传递的“热能”来模拟信息的传播,从而根据用户和物品之间的互动程度来分配推荐权重。物质传播模型则可以理解为在图中模拟物质的流动和扩散,它基于图的拓扑结构,假设用户和物品之间的连接关系可以作为物质传播的“通道”,而推荐结果就对应于图中物质分布的均衡状态。 上述两种模型都能够提供有效的方式来解决多样性与准确性的两难问题。热传导模型强调的是从“热源”(即用户当前的兴趣点)向周围节点的热量扩散,这个过程中既考虑了用户的兴趣点,也考虑了与兴趣点相关联的其他节点。而物质传播模型则着重于模拟一个全局的平衡状态,在这个状态下,系统达到一个推荐的分布,既反映了用户的偏好,也扩大了推荐的范围,避免了过度集中于已知偏好的物品。 这篇论文的研究对于推荐系统工程实践具有重要的借鉴和参考价值。它不仅提供了一种新的视角来分析推荐系统的内部机制,而且还提供了一种可行的算法框架来解决传统推荐系统中经常遇到的多样性与准确性之间的冲突问题。随着大数据技术的不断发展,基于图的推荐算法的精确性和效率都有望得到进一步的提升,其在未来信息过滤和个性化服务领域具有广泛的应用前景。
2024-08-20 11:49:54 204KB
1
YOLO 是一种使用神经网络提供实时对象检测的算法。该算法因其速度和准确性而广受欢迎。它已在各种应用中用于检测交通信号、人员、停车计时器和动物。 YOLO 是“You Only Look Once”一词的缩写。这是一种算法,可以(实时)检测和识别图片中的各种对象。YOLO 中的对象检测是作为歼毁含回归问题完成的,并提供检测到的图像的类别概率。 YOLO 算法余轮采用卷积神经网络 (CNN) 实时检测物体。顾名思义,该算法只需要通过神经网络进行一次前向传播来检测物体。 这意味着整个图像中的预测是在单个算法运行中完成的。CNN 用于同时预测各种类别概率和边界框。 YOLO 算法由各种变体组成。
2024-03-20 13:53:03 173KB 毕业设计
1
粒子群算法在模式识别,图像处理,最优化问题,参数设置中的应用
2023-09-10 01:03:13 38.6MB 粒子群算法
1
字符分割算法论文,中文的论文,e文不好的菜鸟们的福音
2023-05-12 19:16:34 639KB 字符分割 验证码,识别
1
针对煤矿井下巷道视频监控采用定点旋转摄像头成本较高、拍摄视野和图像拼接效果有限等问题,设计了摄像头排列布局方式进行大视差拍摄,针对大视差拍摄的图像拼接困难问题,提出了一种基于多平面多感知缝合线的井下巷道大视差图像拼接算法。首先,采用尺度不变特征变换算法对输入图像进行特征点检测和匹配,得到特征匹配点;然后,基于多平面进行特征匹配点分组并产生相应的对齐候选单应性矩阵,每个单应性矩阵对齐图像中的1个平面,解决了巷道大视差场景下平面不一致问题;最后,在每组局部对齐图像上计算基于颜色、边缘及显著度的多感知缝合线,选择缝合线能量最小的对齐图像合成拼接图像,减少了局部区域错位现象。实验结果表明,该算法与APAP,ANAP,SPHP,NISwGSP,RobustELA等经典图像拼接算法及基于颜色的缝合线算法相比,有效消除了局部区域错位和重影问题,图像拼接效果更自然、无缝。
2023-04-07 11:02:30 2.09MB 井下巷道 视频监控 图像拼接
1
本论文是Clique聚类算法的经典论文,详细介绍了算法的基本原理,算法步骤,相关算法等,是进行Clique算法研究的很好的参考资料
2023-03-28 10:48:58 2.73MB 聚类 Clique 算法
1
张量投票算法利用人类感知功能原理进行计算,它具有较强的鲁棒性、非迭代性、参数唯一性等特性,其非迭代性具有节省计算时间的显著性特征,因此,广泛应用于图像线特征提取,但在一些含有复杂噪声的图像中,却不能得到更为连续的显著线特征信息。本文针对此问题,提出一种改进的具有迭代性的张量投票算法,它主要是对投票域进行迭代改进,使改进后的张量投票算法可以提取更为连续的显著线特征,且与传统的张量投票算法相比,本文算法既缩短了计算时间,又提取了更为连续的线特征图像。
1
基于FPGA的Sobel图像边缘检测算法
2023-03-02 21:34:29 1.44MB 基于 fpga sobel 图像
1