内容概要:本文档详细介绍了基于 Matlab 实现的 POD-Transformer 融合模型,用于多变量回归预测。POD(本征正交分解)用于数据降维,提取关键特征,而 Transformer 模型则捕捉时序数据的长依赖关系。项目通过数据预处理、POD 降维、Transformer 回归和模型评估四个模块,实现了高效的数据降维与多变量回归预测。该方法不仅提高了预测精度和模型泛化能力,还显著降低了计算资源消耗,适用于气象预测、金融市场分析、工业过程控制、智能医疗和智能交通系统等多个领域。; 适合人群:具备一定机器学习和数据处理基础,对多变量回归预测感兴趣的科研人员、工程师及研究生。; 使用场景及目标:① 实现数据降维与多变量回归的高效融合,提升预测精度;② 优化计算资源消耗,降低训练时间;③ 提供普适性的数据降维与回归预测框架,适应不同领域的多变量回归任务;④ 促进数据驱动的智能决策系统发展。; 其他说明:项目通过改进的 POD 算法和定制化的 Transformer 模型,解决了数据降维后的信息丢失、计算复杂度高等问题。代码示例展示了从数据预处理到模型训练和预测的完整流程,适合在资源受限的环境中部署。更多详细内容和代码资源可参考提供的 CSDN 博客和文库链接。
2025-11-29 10:55:59 35KB Transformer 多变量回归 数据降维 Matlab
1
内容概要:本文介绍了LSTM-VAE(基于长短期记忆网络的变分自编码器)在时间序列数据降维和特征提取中的应用。通过使用MNIST手写数据集作为示例,详细展示了LSTM-VAE的模型架构、训练过程以及降维和重建的效果。文中提供了完整的Python代码实现,基于TensorFlow和Keras框架,代码可以直接运行,并附有详细的注释和环境配置说明。此外,还展示了如何通过可视化手段来评估模型的降维和重建效果。 适合人群:对深度学习有一定了解的研究人员和技术开发者,尤其是关注时间序列数据分析和降维技术的人群。 使用场景及目标:适用于时间序列数据的降维、特征提取、数据压缩、数据可视化以及时间序列的生成和还原任务。目标是帮助读者掌握LSTM-VAE的原理和实现方法,以便应用于实际项目中。 其他说明:本文提供的代码可以在本地环境中复现实验结果,同时也支持用户将自己的数据集替换进来进行测试。
2025-06-22 23:22:32 498KB
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
利用ReliefF算法对回归特征变量做特征重要性排序,实现特征选择。 通过重要性排序图,选择重要的特征变量,以期实现数据降维的目的。 程序直接替换数据就可以用,程序内有注释,方便学习和使用。 程序语言为matlab。
2024-05-13 17:26:37 265KB matlab
1
神经网络用于数据降维Matlab代码
2023-04-13 14:04:59 411KB 神经网络 数据降维 Matlab
1
drttoolbox : Matlab Toolbox for Dimensionality Reduction是Laurens van der Maaten数据降维的工具箱。 里面囊括了几乎所有的数据降维算法 从http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html弄下来的,放在这希望对以后有帮助
2023-03-02 21:07:38 1.07MB 数据降维
1
【老生谈算法】matlab实现数据降维PCA算法源码.docx
2023-02-23 13:57:51 112KB matlab pca降维
1
关于数据挖掘中的数据降维的简单介绍,是数据挖掘的一个基础且重要的一个方面
2023-01-07 11:37:10 690KB 数据降维
1
针对大数据信号处理时的特征选择与特征降维,给出了4种有效的特诊选择方法
1
针对大数据信号处理时的特征选择与特征降维,给出了4种有效的特诊选择方法
1