数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
数据标准化(Normalization)是指:将数据按照一定的比例进行缩放,使其落入一个特定的小区间。 为什么要进行数据标准化呢? 去除数据的单位限制,将其转化为无量纲的纯数值,便于不同量级、不同单位或不同范围的数据转化为统一的标准数值,以便进行比较分析和加权。 通过手写Python代码对海伦约会对象数据集完成数据标准化归一化的预处理。 其中包含: (1)Min-Max标准化 (2)Z-Score标准化 (3)小数定标标准化 (4)均值归一化法 (5)向量归一化 (6)指数转换
2024-05-12 16:42:06 981B python 机器学习 数据挖掘 数据预处理
1
抖音用户浏览行为数据集 文章: [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(一)](https://blog.csdn.net/m0_53054984/article/details/136121177) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)](https://blog.csdn.net/m0_53054984/article/details/136123131) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(总)](https://blog.csdn.net/m0_53054984/article/details/136122988) [ 数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(代码部分)](https://blog.csdn.net/m0_53054984/article/details/136455033)
2024-04-08 15:29:37 143.21MB 数据挖掘 数据集
1
内容概要:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 适合人群:具备一定编程基础,工作1-3年的研发人员 能学到什么:Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例 阅读建议:10G的Python数据分析与挖掘实战学习视频,包括了Python3数据科学入门与实战,大数据入门到实战篇(Hadoop2.80),Python3实战Spark大数据分析及调度,数据分析与数据挖掘高级实战案例。
2024-01-18 14:27:38 72B Python 数据挖掘 数据分析 Hadoop
1
按照后期进行数据分析的需求,对数据进行预处理。 -描述性统计:选择合适的方法对数据进行统计分析。包括对数值型和类别型属性的统计,并对分析结果进行图形化的展示(使用ggplot2或者lattice包)。 -推断性统计:选择合适的假设检验方法,分析属性间的相关性、两组数据间是否具有显著性差异,分析结果并给出结论及必要的图形展示。 - 数据挖掘 根据数据特征及需求,利用分类、聚类或时间序列方法挖掘蕴含在数据中的模式及必要的图形展示,用回归模型预测走势 注意:对聚类结果分析聚簇特征   对分类结果计算准确性。   使用时间序列分析方法可判断数据是否存在趋势、周期性等特征,或对数据进行预测。 (分类、聚类、时间序列,回归模型至少使用2种方法)
2023-12-15 14:41:58 3.36MB r语言 开发语言 数据挖掘 数据分析
为在大学生中倡导学习统计、应用统计的良好氛围,促进大学生关注经济社会热点难点问题,适应大数据时代下高校及统计部门对统计人才的培养要求,中国统计教育学会、全国应用统计专业学位研究生教育指导委员会联合举办2021年(第七届)全国大学生统计建模大赛,本届大赛主题为“数据新动能的统计测度研究”,旨在提高大学生数据挖掘、数据分析、运用统计方法及计算机技术处理数据的能力,加强创新思维意识,助力推进统计现代化改革。经过一年的筹备、征集和筛选评议工作,最终选出这26篇优秀论文集结成册,展示当代大学生的统计应用能力和研究水平。 欢迎扫描以上二维码订阅 扫一扫在手机打开 上一篇: 《2022年(第八届)... 下一篇: 关于公布2022年(第... 评论262 0/150 提交 热门评论 相关推荐 关于公布2023年(第九届)全国大学生统计建模大赛报名信息的通知 大赛动态 2023-04-10 10:00595451143 《2023年(第九届)全国大学生统计建模大赛主题解读》(视频) 大赛动态 2023-04-06 09:0046299990 “全国大学生统计建模大赛”成功入
2023-09-29 15:30:40 407.37MB 大数据 k12 数据挖掘 数据分析
1
2022 APMCM summary sheet 为解决全球变暖对全球气温的影响问题,本文采用ARMA模型、LSTM模型和Stacking模型融合对未来全球温度变化趋势和影响因素预测进行分析。 对于问题一的第一部分,需要每十年的全球平均温度的增幅进行比较并绘制折线图进行表示,分析得到同意2022年3月全球气温的上升确实比以往任何10年期间观测到的升幅都要大的结论。对于问题一的第二部分,我们分别建立了ARMA模型和LSTM模型用时间来拟合过去的温度变化,并预测2100年12月前的温度。对于问题一的第三部分,使用第二部分的两个模型进行预测,预测结果不一致,ARMA模型预测到2100年6月,2050年5月全球平均温度到达20℃,LSTM模型预测为2050年到2300年全球平均气温均低于20℃,所以根据此模型预测趋势推断出以后全球平均气温不会高于20℃。对于问题一的第四部分,根据相关计算得到两个模型的平均绝对误差分别为0.31,0.0195,根据以上数据我们得出LSTM模型预测的更准确。 对于问题二的第一部分,我们使用经纬度和时间两组数据对温度进行预测,为了确保模型的健壮性,我们采用Sta
2023-05-20 23:15:01 3.34MB 数学建模 数据挖掘 数据分析 机器学习
1
基于python的喝咖啡人数和年龄的数据集,csv格式。
2023-03-28 11:13:20 81KB 咖啡 数据挖掘 数据分析 python
1
原始数据处理并归一化后的数据 配套: 航空大数据——由ADS-B报文系统预测飞机坐标(飞行轨迹)(二) https://blog.csdn.net/qq_39291503/article/details/117742694
2023-03-08 09:03:07 539.88MB 大数据 信号处理 数据挖掘 数据分析
1
毕业设计基于Python的豆瓣网站数据爬取与可视化的设计与实现项目源码。通过python爬去豆瓣网的数据,用大数据基础对数据进行清洗,然后对清洗的数据可视化,更直观的展示出来。毕业设计基于Python的豆瓣网站数据爬取与可视化的设计与实现项目源码。通过python爬去豆瓣网的数据,用大数据基础对数据进行清洗,然后对清洗的数据可视化,更直观的展示出来。毕业设计基于Python的豆瓣网站数据爬取与可视化的设计与实现项目源码。通过python爬去豆瓣网的数据,用大数据基础对数据进行清洗,然后对清洗的数据可视化,更直观的展示出来。毕业设计基于Python的豆瓣网站数据爬取与可视化的设计与实现项目源码。通过python爬去豆瓣网的数据,用大数据基础对数据进行清洗,然后对清洗的数据可视化,更直观的展示出来。毕业设计基于Python的豆瓣网站数据爬取与可视化的设计与实现项目源码。通过python爬去豆瓣网的数据,用大数据基础对数据进行清洗,然后对清洗的数据可视化,更直观的展示出来。