Con北京站聚焦技术落地与前沿趋势,核心方向包括: ​​AI工程化​​:端侧推理、RAG增强、多模态生成成为主流; ​​云原生深水区​​:混合云治理、湖仓一体架构、可观测性技术持续迭代; ​​安全与效能​​:大模型安全防御、研发流程标准化、平台工程价值凸显; ​​行业融合​​:物流、金融、社交等领域的技术跨界创新案例丰富。 大会为开发者提供了从理论到实践的全景视角,推动技术向生产力转化。 小红书FinOps实践:云成本优化与资源效率提升 在当今数字化转型和云计算迅猛发展的背景下,企业的云成本管理和资源效率成为核心议题。梁啟成在其著作中探讨了通过FinOps实践优化云成本、提升资源效率的有效途径。 ### 云资源成本与优化 云资源的成本管理是企业成本优化中的关键。企业需要对云资源的费用、折扣空间、资源开通权限、供应商情况及资源用量归属有清晰的认知。通过对实际资源成本与预算计划的比较,分析成本分摊的合理性,以及资源配置、存储周期和介质是否符合预期,企业可以定期组织成本review,从而对业务目标和资源动因有一个明确的了解。 ### 成本洞察与优化策略 梁啟成提出了两个核心概念,即成本洞察(Inform)和成本优化(Optimize)。成本洞察意在对企业消耗资源的方式和成本进行深入分析,而成本优化则是要通过策略和操作改变现状,实现成本的降低和资源使用效率的提升。目标是通过对外统一混合云计费账单模型,对内提供量价对应的资源账单,让业务部门能够清晰地看到成本,实现精细化运营。 ### 实施成效与案例分析 在梁啟成的实践中,中台自持资源成本占比实现了从15%以上降低到5%的显著效果。通过权责分明,采购部门负责商务节约(saving),中台技术提升效率,业务技术优化用量,从而实现了内外账金额偏差的控制。在资源管理方面,通过中台产品上架管理,资源用量上报、计费项定价与计费出账,提高了资源使用的透明度。 ### 技术细节与性能优化 内存访问延迟是影响CPU利用率的一个重要因素,不同访问方式(本地访问、跨NUMA访问、跨Socket访问)的性能存在显著差异。内存规格越大,可能会导致更激烈的邻居间内存共享竞争。此外,内存使用分布不均衡问题也是优化过程中的一个挑战。在CPU利用方面,通过优化内核配置和管理策略,可以显著提升性能,如通过优化消除IPI中断带来的性能退化,或通过调整系统内存管理策略减少抖动,从而提升CPU利用率和整体QPS。 ### 大型虚拟机与Pod策略 在虚拟化环境的资源优化方面,"大VM小Pod策略"被提出来作为解决方案。该策略包括申请大规格VM,以单socket单VM来避免底层虚拟化的问题;混合多业务,以分散热点分布,减少资源共振;通过K8s调度和内核burst能力提升Pod的弹性和容忍度。这些措施可以显著缓解CPU分层问题,提升峰值利用率,优化资源使用效率。 ### GPU资源的使用优化 在GPU资源使用方面,梁啟成强调了GPU利用率和饱和度的监控,以及计算类型分布和卡型用途的记录。通过使用列存格式(如Parquet)和数据湖技术,可以存储和管理多云统一AI训练数据集,减少冗余存储,并优化跨云数据传输和异构介质分层管理数据。 ### 结论 梁啟成的FinOps实践为企业提供了一个全面的云资源成本优化和资源效率提升的蓝图。通过对成本的深入洞察、优化策略的实施以及技术层面的性能调优,企业可以实现云资源的精细化运营,从而在保障业务目标达成的同时,实现成本的有效控制和资源的高效利用。这些实践不仅有助于企业提升技术能力,而且能够促进业务流程的优化,达到降本增效的双重目的。
2026-01-06 17:10:40 3.08MB 人工智能 AI
1
内容概要:本文深入探讨了如何使用Simulink优化永磁同步电机(PMSM)的最大扭矩最小损耗(MTPL)控制策略,从而显著提升电机效率。文章首先介绍了70kW电机模型及其非线性特征,特别是通过有限元分析(FEM)获得的磁链数据和斯坦梅茨铁损系数的应用。接着,详细解释了磁场定向控制器(FOC)的双环结构以及如何通过优化算法(如fmincon)在不同转速和扭矩条件下找到最佳电流组合(id和iq),以最小化铜损和铁损。文中还展示了具体的优化效果,包括突加负载时的损耗减少情况,并强调了稳定性和实时性的保障措施。最后,提供了实用的代码片段和注意事项,帮助读者理解和应用这一优化方法。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是对电动汽车驱动系统感兴趣的工程师。 使用场景及目标:适用于希望深入了解并应用于实际项目的电机控制工程师。主要目标是在不影响性能的前提下,最大限度地降低电机能耗,延长电动车续航里程。 其他说明:文章不仅提供了理论分析和技术细节,还包括了大量的代码实例和实验数据,便于读者进行复现和进一步探索。此外,文中提到的一些技巧(如查表法、弱磁控制等)对于提高系统的鲁棒性和实时性非常有用。
2026-01-06 13:52:43 2.08MB Simulink PMSM FOC 优化算法
1
基于Simulink优化的电机控制参数提升效率:MTPL控制策略下的最小损耗与最大扭矩电流组合探索及传动系统参数化设计,基于Simulink优化的电机控制参数提升效率:MTPL控制策略下的最小损耗与最大扭矩电流组合探索及传动系统参数化设计,通过simulink优化控制参数提高电机效率,进行最大扭矩最小损耗MTPL Max Torque Per Loss 控制,获取电机铁损、铜损最小时候的id,iq电流组合 使用导入的FEM数据和优化的磁场定向控制(FOC)的PMSM驱动,以及支持设计脚本:确定开环频率响应并检查稳定裕度。 确定最佳的d轴和q轴电流,以便在提供命令的扭矩和速度时使电机总损耗最小。 电力驱动通过以下方式实现: 一个详细的Simscape Electrical非线性电机模型,采用列表磁链和斯坦梅茨系数的形式。 有关更多信息,请参见此示例。 一个磁场定向控制器(FOC),已经过优化,以尽量减少电机损耗。 传动系统 驱动器参数化为70 kW(最大功率)、150 Nm(最大扭矩)电机,适用于电动汽车动力系统。 电源是500伏DC电源。 面向场的控制器体系结构 PM
2026-01-06 13:51:55 7.42MB
1
实例讲解半桥LLC效率低下原因及解决.pdfpdf,实例讲解半桥LLC效率低下原因及解决.pdf
2025-12-01 17:34:28 1.06MB 开关电源
1
【LLC谐振变换器效率低下原因分析及解决方法】 LLC谐振变换器因其开关损耗小、适用于高频高功率应用而备受青睐。然而,在实际设计中,许多工程师可能会遇到功率输出不足的问题。本文以半桥谐振LLC变换器为例,深入探讨效率低下原因并提出解决方案。 我们来看看半桥LLC的基本参数。在这个实例中,PFC铁硅铝磁环AS130的电感量为330uH,PFC二极管选用MUR460,PFC MOSFET为7N60,PFC输出电压为395V。负载为24V,6A,146W。LLC级的谐振网络参数包括谐振电感Ls为175uH,谐振电容Cs为15nF,励磁电感Lm为850uH,M值(励磁电感与谐振电感之比)为5,Q值为0.5,工作频率Fr为100kHz。变压器的匝比为8.5,开关使用7N60二极管。在满载150W,开关频率82kHz的情况下,虽然波形看起来正常,但效率仅达到88%。 **思考1**:低励磁电感可能导致MOSFET关断损耗增加。初始设计中,励磁电感Lm为550uH,通过调整到850uH,虽然空载时励磁电流峰值有所下降,但效率提升有限,因为降低励磁电感不利于ZVS条件的实现。 **思考2**:次级二极管在谐振网络电流等于励磁电感电流后停止传导,可能影响ZCS,尤其是在满载时,二极管振荡可能恶化效率。需要测量满载时的二极管电流波形以确认。 **思考3**:二极管钳位和双谐振电容的过载保护方案可能影响效率。这需要进一步评估其对整体性能的影响。 **建议1**:提高工作频率,确保开关频率略高于谐振频率,以补偿死区时间的影响。 **建议2**:避免在重载时使用过低的开关频率,防止副边漏感和原边节电容谐振,影响效率。 **建议3**:单独测试PFC和DCDC部分,以确定效率低下的源头。增大励磁电感虽可减少励磁电流,但可能不利于ZVS,增加死区时间反而可能降低效率。 **建议4**:对于PFC效率低的问题,可考虑采用CRM或DCM模式。如果空间允许,可使用铁氧体提升效率。 经过上述建议的实施,再次测试得到满载30分钟的效率提升至89.6%。这表明参数的微调对于效率改善至关重要。具体参数调整包括电感量增大、初级匝数减少、次级电流密度提升以及考虑最小输入电压计算峰值增益等。同时,根据Q值选择合适的谐振元件值,并通过控制初级和次级间的物理距离来调整漏感,确保系统性能的优化。 总结来说,提高LLC谐振变换器效率涉及多个方面,包括正确计算谐振频率、优化谐振网络参数、合理选择开关器件以及考虑系统的保护策略。通过对这些因素的精细调整,可以显著提升变换器的工作效率。
2025-12-01 17:33:21 308KB 谐振变换器
1
内容概要:本文介绍了基于Simulink平台搭建永磁同步电机(PMSM)效率优化模型的方法,主要探讨了三种优化方案:基于磁场定向控制(FOC)的进退法和黄金分割法,以及基于直接转矩控制(DTC)的最小损耗控制(LMC)模型。文中详细讲解了每种方法的具体实现步骤、代码片段及其优缺点,并提供了实用的调参技巧和注意事项。通过对比实验数据,作者指出了各算法在不同工况下的表现特点,强调了版本兼容性和参数辨识的重要性。 适合人群:从事电机控制系统研究与开发的技术人员,尤其是熟悉Simulink工具箱的工程师。 使用场景及目标:适用于希望提高PMSM工作效率的研究项目或工业应用,旨在通过优化控制算法降低能耗,提升系统性能。具体应用场景包括但不限于电动汽车驱动系统、工业自动化设备等。 其他说明:文中提到的所有模型均已上传至GitHub,供读者下载参考。建议读者在实践中结合自身需求进行适当调整,同时关注最新版本的Simulink软件以获得更好的仿真体验。
2025-10-30 20:41:11 376KB
1
内容概要:本文介绍了COMSOL激光打孔技术及其核心组成部分——水平集方法的应用与实践。COMSOL激光打孔技术利用高能激光束对材料进行精确打击,在电子、航空、汽车、医疗等领域得到广泛应用。水平集方法通过复杂数学模型和算法,精确控制激光功率、扫描速度、聚焦深度等参数,确保孔的形状、大小和位置的精准度。此外,水平集技术可根据不同材料和需求灵活调整,适用于金属、塑料等多种材质,显著提升了加工效率和产品质量。 适合人群:从事制造业、材料加工领域的工程师和技术人员,以及对先进制造技术感兴趣的科研人员。 使用场景及目标:① 提升激光打孔的精度和效率;② 探索水平集方法在不同材料和应用场景中的优化配置;③ 支持制造业技术创新和发展。 阅读建议:关注水平集方法的具体实现细节,结合实际案例深入理解其在激光打孔中的应用效果。
2025-10-29 00:14:20 298KB
1
基于Lumerical FDTD仿真的不对称光栅衍射效率研究与复现多级次案例,Lumerical FDTD模拟研究:复现不对称光栅多级衍射效率的精确计算与解析,Lumerical FDTD复现不对称光栅不同级的衍射效率 ,Lumerical FDTD; 复现; 不对称光栅; 衍射效率; 不同级,Lumerical FDTD模拟复现不对称光栅衍射效率研究 在光子学研究中,不对称光栅的衍射效率研究一直是前沿科学领域关注的重点之一。由于不对称光栅的复杂几何结构和衍射特性,理论解析存在一定的难度,这使得通过数值仿真方法来研究和预测不对称光栅的衍射效率变得尤为重要。Lumerical FDTD(时域有限差分法)作为一种先进的仿真工具,能够在频域内模拟和分析光波与光栅相互作用的物理过程,进而获得精确的衍射效率计算结果。 不对称光栅在光学器件中扮演着关键角色,例如在光谱仪、光学传感器和光学通讯设备中。这些器件的性能很大程度上取决于光栅衍射效率的优化。因此,精确计算和复现不对称光栅的多级衍射效率,对于指导实际光栅设计和制造具有重大意义。 Lumerical FDTD模拟研究不仅能够复现不对称光栅的衍射效率,还能解析光栅的物理特性,如光波与光栅相互作用的细节,从而帮助研究者深入理解光栅的衍射机制。通过调整光栅的结构参数,如栅线宽度、深度以及栅线间距,研究者可以优化光栅的衍射性能,实现特定的光学功能。 此外,基于Lumerical FDTD仿真的研究还能够帮助实验物理学家在进行实际测量之前预估可能的结果,并对实验设计进行指导。这种理论与实验相结合的方法,不仅提高了研究效率,也加深了对物理现象的理解。 从文件名称列表中可以看出,这些文档涵盖了不对称光栅衍射效率研究的多个方面,包括引言、理论分析、模拟仿真和应用研究等。这些材料对于研究人员深入探究不对称光栅的物理性能、设计优化以及在不同光学系统中的应用具有重要的参考价值。 文件列表中还包含了一个图像文件“1.jpg”,它可能提供了对不对称光栅结构或仿真结果的直观展示,这对于理解研究内容和结果具有辅助作用。而其他文档则包含了大量的理论分析和仿真数据,为深入研究提供了基础数据和分析框架。 Lumerical FDTD仿真在不对称光栅衍射效率研究中扮演着重要角色,它不仅能够精确复现光栅的多级衍射效率,还能够帮助研究人员在理论上深化对光栅物理特性的理解,并指导实际应用的设计与优化。这份工作对于推动光学技术的进步、开发新型光学器件具有重要的科学价值和应用前景。
2025-10-25 14:47:17 829KB scss
1
内容概要:本文介绍了适用于ABAQUS的黏弹性边界及等效地震荷载施加插件的功能和应用场景。该插件能一键添加黏弹性边界并自动生成等效地震荷载,分为垂直入射版本350和支持更大范围地震荷载的垂直入射+斜入射版本600。插件简化了复杂边界条件和荷载的设定流程,极大提升了地震响应分析的效率和准确性。文中还详细描述了插件的操作步骤及其在实际工程中的应用案例,如高层建筑的地震响应分析。 适合人群:从事土木工程、结构工程以及地震工程研究的专业人士和技术人员。 使用场景及目标:①需要高效、准确地进行地震响应分析的研究人员;②希望简化黏弹性边界和等效地震荷载设置的工程师。 其他说明:该插件不仅提高了工作效率,还能帮助用户获得更加精确的地震响应数据,从而更好地评估地震风险。
2025-10-22 22:05:05 248KB ABAQUS
1
在当下迅速发展的移动应用开发领域,安卓平台凭借其开放性和灵活性,成为了开发者们构建移动应用的首选之一。然而,开发效率一直是制约项目进度和质量的关键因素。为了解决这一问题,众多开发者和团队不断探索和开发出各种工具和框架,旨在简化开发流程,提高代码的编写效率和项目的可维护性。RxTool便是其中之一,它作为一个集合了多种功能的工具集,尤其在图像处理项目中展现了其巨大的威力和便利性。 RxTool是专门为安卓开发而设计的工具集,它的核心思想来源于响应式编程理念,即通过数据流和变化传播的模式来简化异步编程。这种编程模型被证明在处理复杂的数据转换和用户界面更新时尤其有效。RxTool采用了Reactive Extensions (Rx) 框架,使得开发者可以在安卓应用中轻松实现响应式编程。 图像处理是移动应用中一个非常重要的方面,它不仅涉及到应用的美观程度,还关系到用户体验和应用性能。因此,对于图像处理项目的开发,效率和质量尤为关键。计算机视觉作为图像处理的核心技术之一,其目的在于使计算机能够从图像或视频中识别、处理和解释信息,从而实现模拟人类视觉系统的功能。 在图像处理项目实战中,RxTool能够帮助开发者实现一些常见的功能,比如图片的加载、显示、保存、编辑、滤镜应用、格式转换等。这些功能往往需要大量的重复代码和对底层图像处理库的调用。而通过RxTool,这些操作可以被大大简化。开发者仅需要很少的代码就能实现强大的图像处理功能,这不仅可以提高开发效率,还能减少出错的可能性。 此外,RxTool还提供了一些高级功能,比如对图像的实时处理和分析。通过这些功能,开发者可以对用户上传的图片进行快速分析,识别出图片中的内容,并根据这些内容做出相应的处理。例如,在一个社交应用中,通过分析用户上传的图片,应用可以自动为图片打上标签,或者根据图片内容推荐相关的好友,从而提高用户体验。 在安卓开发中,RxTool不仅简化了图像处理相关的开发任务,还提升了整个项目的响应性和性能。由于RxTool基于响应式编程模型,它使得开发者能够更加专注于数据流的处理,而不是底层的异步逻辑。这样一来,代码的可读性和可维护性也得到了显著提升。 RxTool作为一个工具集,它的出现大大提升了安卓开发中图像处理项目的开发效率。它不仅简化了复杂的图像处理操作,还通过响应式编程的模式,提高了代码的性能和可维护性。在当前移动应用开发竞争日益激烈的环境下,掌握并熟练使用RxTool这样的工具,对于提升开发效率、构建高质量的应用至关重要。
2025-10-06 14:52:07 8.35MB 图像处理 计算机视觉
1